
Design Pattern for Multi-Modal Coordinate Spaces

Daniel Ruijters1,
Jeroen Terwisscha van Scheltinga2, Bart M. ter Haar Romeny3, Paul Suetens4

1 Philips Medical Systems, X-Ray Predevelopment,

Veenpluis 6, 5680DA Best, the Netherlands, danny.ruijters@philips.com
2 Philips Medical Systems, Cardio-vascular, XtraVision software,

Veenpluis 6, 5680DA Best, the Netherlands
3 Technische Universiteit Eindhoven, Biomedical Engineering,

Image Analysis and Interpretation, den Dolech 2, 5600MB Eindhoven, the Netherlands
4 Katholieke Universiteit Leuven, Medical Image Computing, ESAT/Radiologie,

Herestraat 49, B-3000 Leuven, Belgium

Abstract

Applications for visualizing and/or modelling of complex 3D scenes, such as programs
dealing with medical multi-modal 3D data sets, have to cope with a vast number of coordinate
spaces. In such applications, treating a datum in the wrong coordinate space is one of the most
common reason for bugs. Furthermore, the large number of coordinate transformations lead to
code which is difficult to handle and understand. In this article a framework is presented that
encapsulates coordinate space transitions, and offers the user a simple and logical entry point
to access such transformations. It reduces the chance of �assuming� a wrong coordinate space
to a minimum. The framework is very flexible, in the sense that it allows dynamic
composition of scenes, with dynamic transformations between the scene objects. It further
allows any type of transformation: affine, non-affine, many-to-one projections,
discontinuities, etc.

1 Introduction

There are numerous applications with a large number of geometrical coordinate spaces (also
known as coordinate systems). This is the case in e.g. interactive 3D graphics and modelling
applications, medical applications dealing with (multi-modal) voxel volumes, algorithms
handling complex dynamic mechanical structures, coordinate transformations for
astronomical or geodetic purposes (such as GPS), and many others. The relationships between
the different coordinate spaces can be static or dynamic, bijective or many-to-one, continues
or contain discontinuities, and be affine or non-affine.
When the amount of coordinate spaces is large, the code dealing with coordinate
transformations may become complex and prone to errors. To overcome these problems, we
developed a software design pattern, to transparently and robustly deal with multiple
coordinate spaces. This framework especially aims at severely reducing the chance of making
false assumptions, and reducing the complexity of the code.
The framework can be applied for the transformation of data between related spaces of
ordered n-tuples, such as vector spaces. It might be of interest to point out that these spaces
are not necessarily Euclidean. For instance, a voxel space (a vector space representing voxel
indices), whereby the voxels are not cubic (which is very common in e.g CT and MR
volumes) is not Euclidean. Strictly speaking, the design pattern can also be applied to spaces
of ordered n-tuples that are not vector spaces, i.e. spaces whose elements cannot be linear
combined, such as e.g. manifolds. The only criterion is that a mapping exists between the
spaces.

mailto:danny.ruijters@philips.com

2 Related work

An intuitive hierarchical data structure for managing the relations between different
coordinate systems is the scene graph. Scene graphs are used in numerous graphics
applications, toolkits, modelling and programming languages, such as VRML [1],
Open Inventor [2], OpenGL Performer [3], Java 3D [4], Open SG [5], Open Scene Graph [6],
nVidia NVSG [7] and many others. Where VRML is only able to describe the scene graph,
the others also provide some means to transform points from one coordinate system to
another. The transformations are, however, still very much driven by the user of these tools,
i.e. it is his responsibility to keep track of which data are in which coordinate space, and
whether and how it should be transformed. The framework that is presented here, is not
intended to replace these toolkits. It rather is build on top of a scene graph, and thus could be
used as an extension to the mentioned toolkits.
Zuiderveld and Viergever [8] describe an Object-Oriented approach aimed at integrated
visualization of multiple volumetric datasets, which also deals with coordinate systems.
However, they chose to leave the coordinate transformations to the responsibility of the user
of their framework. Nadeau [9] presents volume scene graphs, a structure for composing
scenes containing volumetric data sets, where the scene graph is used to transform coordinates
from world to image space. Other transformations, though, are not directly provided by his
framework.
In geospatial applications [10, 11] it often is desirable to express points in different geometry
systems, such as geocentric, heliocentric or local coordinate systems. For reasons of
efficiency or simplicity it can be desirable to express coordinates in flat earth or spherical
earth coordinate systems, and for accuracy ellipsoid or geoid coordinate space may be
required. The software paradigm in this paper can be used to easily query data in the desired
coordinate system.
There is a significant difference between a point and an extent, as Weisert [12] points out.
This difference is particularly of importance when transforming data from one coordinate
system to another one (e.g. translations do not affect the values of an extent, but they do affect
the coordinates of a point).
The here presented framework can be regarded as a software design pattern for dealing with
large number of coordinate spaces. A general overview of design patterns is offered by
Gamma et al. (�the gang of four�) [13].

3 Design basics

We define �geometry classes� as a set of object classes, describing basic geometrical entities,
such as points, vectors, lines, angles, planes, etc. To identify them easily, we use the prefix
�geo�. Instances of these classes are generalized under the term �geometry objects�. It is our
objective to easily query them in any given coordinate space. A further important class in our
framework, is the 3D entity, which is a node in the scene graph. Any spatial object that can be
drawn should be derived from the 3D entity class. But there can be also abstract 3D entities,
that do not draw anything. A 3D entity contains a number of geometry objects, to describe its
spatial properties.
One of the first observations we made, is the fact that any 3D entity, which can be found in a
scene graph, implicitly defines its own coordinate space. Consider a traditional 3D entity (e.g.
a table), which is located in a parent space (e.g. a room). The object has a translation, which
corresponds to the coordinate of the origin of the object expressed in its parent space. Further
it can have a rotation, which corresponds to a rotation of its axes with regard to the axes of the
parent space, and a scaling. In fact we have just described a rigid transformation between two
coordinate spaces.

 -m_space

1 *

3DEntity

+Get(in space : 3DEntity)
-m_coordinate

geoPoint

(a)

(b)

Transformation-m_transformation

1 1-m_parent

1

*

3DEntity

Figure 1: (a) the geoPoint class has internal coordinate values, and a reference to its internal
coordinate space, (b) every 3DEntity contains a reference to its parent, and a spatial
transformation with regard to its parent.

In our software paradigm, an abstract coordinate space is an instance of a 3D entity, and
therefore every instance of a class, inherited from the 3D entity class, always defines its own
coordinate space.
Further, we established that the position of a point is always defined in a coordinate space.
This may be a trivial observation. In an application with many coordinate spaces, though,
treating a datum in the wrong coordinate space is one of the most common causes for bugs,
and may be difficult to track when coordinate spaces are similar or related. The same
considerations are of course true for instances of other geometry classes, e.g. normals, lines,
planes, etc. Therefore we provide all geometry classes, with a reference to the coordinate
space they are internally defined in (see Figure 1a). In this way it is virtually impossible to
�assume� a wrong coordinate space.
The internal coordinate space of an instance of such a class is defined at construction of the
instance, and stays fixed during the lifetime of the instance. This is particularly of importance
when the relations between the coordinate spaces are dynamic. Imagine, for instance, a
camera, which moves with respect to the depicted scene; the relation between the camera
coordinate space and scene coordinate space is then dynamic. It matters whether the
coordinates of a point are defined in camera space (e.g. relative to the view port corners), or in
scene coordinates (e.g. relative to the position of an object in the scene).

4 Transforming space

The Transformation class describes the spatial mapping between an instance of a 3D entity
and its parent in the scene graph (see Figure 1b). This is an abstract class, and specific
transformation classes, such as affine transformations, are inherited from this class.
The Transformation class possesses virtual functions to transform coordinates from its owner
space to the parent of its owner, and vice versa (this approach is similar to the Visitor design
pattern [13]). These functions return a boolean to indicate whether the requested
transformation could be performed. In this way also many-to-one relations could be
implemented; the function corresponding to the one-to-many direction would then always
return false. Further, transformations that are only valid for a certain sub-space can use this
mechanism, since they would return false for points outside the sub-space. Similar virtual
functions are available for transforming all other geometry objects, like vectors, matrices,
plane equations, etc.
A rigid transformation can be described by translation and rotation only. In the case of an
affine transformation (of which the rigid transformation is a sub class) the virtual

transformation functions can be implemented by multiplying homogeneous coordinates
(x, y, z, w), representing points or vectors, with the 4*4 transformation matrix (or inverted
matrix, for the inverse transformation). A typical implementation for elastic (non-affine)
transformations could use spline interpolation, driven by a volumetric mesh.
Since no assumptions are being made about the type of transformation, the various relations
in a scene graph might be of a different kind (e.g. affine and non-affine transformations could
be found in the same scene graph, to depict for instance underwater scenes).

5 Querying geometry objects

One of the most essential functions that any geometry class has in our framework, is the Get
function (see Figure 1a). The Get function allows to query a geometry object with respect to a
given coordinate space. The Get function of e.g. the geoPoint class takes a reference to a
coordinate space as input parameter, and returns the coordinate values of the point with
respect to the passed coordinate space.
If the passed reference to a coordinate space equals the internal space of a geometry object, its
internal values are simply returned. If they are not equal, the internal values are transformed
from the internal coordinate space to the destination one, passed as input parameter. In order
to do this, the scene graph is traversed, delivering the path from the internal coordinate space
to the destination one. The transformations between the intermediate coordinate spaces in the
path are then applied to the geometry object. If a transformation returns false (thus it is not
possible to transform the geometry object over that node), or if no path exists between the
internal and destination space (i.e. they are not in the same scene graph), an exception is
thrown.
Four rigid transformations of a coordinate, as is shown in Figure 2a, take 2.7 µs on a Pentium
IV 3.0 GHz machine.

6 Traversing the scene graph

(a) (b)

World

ViewportVoxels

Volume Camera

Patient

World

ViewportVoxels

Volume Camera

Patient

World

Patient

Figure 2: (a) Traversing the scene graph, (b) Building the path that represents the traversal of
the scene graph.

When coordinate space that is passed to the Get function of geometry object, is different than
the internal one, the scene graph has to be traversed. In order to perform this efficiently two
arrays with references to the nodes in the scene graph are built. The ascending array starts

with internal coordinate space of the geometry object. Iteratively the parent of the last node in
the array is added, until the top node is reached. The descending array starts with the
destination coordinate space, and also here parents are added until the top node is reached.
Now it is checked whether the last node (the top node) in both arrays is the same. If this is not
the case, meaning that the internal and destination coordinate spaces are not in the same scene
graph, and an exception is thrown.
After the check, the nodes at the end of both arrays are removed if they are the same. This is
repeated until the ends are different, see Figure 2b.
The remaining nodes now form the path that has to be traversed. The data of the geometry
object is consequently transformed by the nodes in the ascending array, starting with first
node in the array. Then the data is transformed by the nodes in the descending array, calling
the inverse transformation functions. This array is parsed starting from the end, see Figure 3.
Note that the order of this algorithm is only determined by the height of the scene graph, not
by its width.

7 Operator overloading

Another important feature is the fact that we overloaded the operators of the geoPoint and
geoVector classes. Note that two points cannot be added together, but a point and a vector can
be added, delivering a new point [12]. By overloading the operators, we can even add points
and vectors, which are internally expressed in a different coordinate system.
For instance let us consider the position of an object in the scene, expressed by an instance of
the geoPoint class, with the world coordinate system as internal space (expressed in e.g.
millimeters), and a geoVector instance, expressing a mouse movement, with the view port
coordinate system as internal space (in pixel coordinates). Suppose we want to translate the
object by the mouse movement. The corresponding code could be as simple as
objPos = objPos + mouseMove; (see Figure 3). Note that the internal coordinate spaces
of the variables in this expression is different.
The overloaded operator+ of the geoPoint class will take care that mouseMove is
transformed to the coordinate space of objPos. The Get member function of the geoVector
class will transform the internal values of the vec variable from its own internal space to the
internal space of the objPos variable, and then the two can be added without any problems.
This feature leads to very powerful and simple code, as illustrated in the TranslateObject
function, since the code expresses what you want to achieve conceptually, instead of
expressing all kinds of difficult coordinate transformations.

void TranslateObject(geoPoint& objPos, const geoVector& mouseMove)
{
 objPos = objPos + mouseMove;
}

geoPoint geoPoint::operator+ (const geoVector& vec) const
{
 return geoPoint(m_coordinates + vec.Get(m_space), m_space);
}

Figure 3: The function TranslateObject illustrates the code that a user of the Coordinate Space
Design Pattern would write. The operator+ below, shows how the design pattern deals with
this code internally. The mouseMove variable is queried in the coordinate space of the objPos
variable.

8 Real life examples

8.1 Mouse click on a voxel volume

Take an iso-surface rendered voxel volume, and suppose we want to determine which surface
voxel lies under the mouse cursor at a mouse click. In order to do so, a line through the cursor
position (viewing ray) has to be intersected with the isosurface. This line is defined by the
cursor position and the camera normal, in the case of a parallel projection, and by the cursor
position and the camera
focus point in the case of a perspective projection. Using the presented framework, it is no
problem to define a line from two points which are constructed in different coordinate
systems. After the line has been defined, it can be easily obtained in voxel space, using the
Get function. Then it should be passed to a 3D variant of Bresenham�s algorithm [14], to
deliver the intersection point.

8.2 Defining points of interest

Consider an application with two windows next to each other, in order to view two registered
multi-modality volumetric data sets. In one view a slice of the reference data set is displayed,
while in the other the corresponding interpolated surface through the other data set is shown
(non-affine registration). A mouse click marks a point of interest in one data set. The point
can be constructed as follows: geoPoint mousePnt(viewport1.x,viewport1.y,0);
Drawing the corresponding point in the other view is as simple as:
Plot(mousePnt.Get(viewport2));, assuming that the Plot function is library function
that takes pixel coordinates as input.
Note that the Get function transforms the mousePnt coordinates first from viewport1
(pixels) to world coordinates (millimeters), which is a rigid transformation. Then the
coordinates are transformed from world coordinates to the frame of reference of volume2,
which is a non-affine transformation, executed by a different transformation class. Finally the
coordinates are transformed from the frame of reference to viewport2, which is a rigid
transformation again, delivering the pixel coordinates of the point to be plotted. This complete
procedure remains hidden for the user of the framework.

8.3 Gantry-tilt CT volumes

Figure 4: Planning the location of the CT slices, with tilted gantry. The gantry is tilted to
avoid radiating the eyes, while capturing a maximum of relevant anatomical data.

CT volumes, which have been acquired with a tilted gantry, produce a voxel space with non-
orthogonal axes (see Figure 4). Typically such volumes are resampled on a orthogonal grid
for volumetric visualization, leading to loss of image quality. However, it is possible to
encapsulate the shearing (skew) that is introduced by the non-orthogonality in an affine
transformation (e.g. expressed in a 4*4 matrix). In this way the data can be queried without
resampling, using our framework. The fact that the data is stored in a non-orthogonal grid

remains completely hidden for a programmer who accesses it through the coordinate space
design pattern, since he can define positions in e.g. patient space (millimeters), and the
framework takes care of the transformation to the skewed space.

8.4 Follow camera orientation

Suppose we want one single object in the 3D scene always to be presented with the same side
to the camera. This object, however, should be positioned and scaled according to its location
in the scene (i.e. moving camera could change only the rotation of the object, but not its
translation or scaling). To solve this task, we can define to geoVector instances in camera
space, representing the x- and y-axis of the camera. For the x-axis this can look like:
geoVector x_camera(1,0,0,cameraSpace); Now we will rotate the object such that
its x-axis will point in the direction of the camera x-axis. To do so we query the camera x-axis
in the coordinate space of the object: x_camera.Get(objectSpace); The nice thing is
that this produces the orientation of the camera x-axis in the object space instantaneously, no
matter how many nodes there are between the camera and the object in the scene graph. The
vector still has to be normalized, and then the dot product between this vector and the object
x-axis (which is simply (1,0,0)) delivers the cosine of the angle that we should rotate. The
cross product delivers the rotation axis. The same procedure can be followed to orient the y-
axis correctly.

9 Conclusions

In this article we have introduced a generic software solution for a flexible and transparent
design pattern for handling multiple coordinate spaces. The proposed framework is especially
powerful when the number of coordinate spaces is large and their relations are dynamic, such
as is e.g. the case in multimodality medical applications.
The complexity of dealing with multiple coordinate spaces lies in the transformation between
the individual spaces. The strength of the proposed framework is the fact that these
transformations are maintained at a single spot, and in the rest of the code no awareness of
these transformations is needed. The code expresses what you want to achieve conceptually,
instead of expressing all kinds of difficult coordinate transformations.
In the case that the actual values of a geometry object are needed with respect to a certain
coordinate space, these can be only obtained by explicitly passing the desired coordinate
space to the Get operation. This severely reduces the chance of �assuming� a wrong
coordinate space, one of the most common causes of bugs in such applications. If a
transformation is needed from the internal coordinate space to the requested one, the
transformation is performed automatically, and hidden from the user of the function call.
The design pattern has been successfully implemented in two medium and three large scale
software projects.

References

[1] International Standards Organization. The Virtual Reality Modeling Language. ISO/IEC

14772-1:1997, 1997
[2] D. Wang, I. Herman and G. J. Reynolds. The Open Inventor Toolkit and the PREMO

standard. Computer Graphics Forum, 16(4): 159�175, 1997
[3] J. Rohlf and J. Helman. IRIS Performer: a high performance multiprocessing toolkit for

real-time 3D graphics. In Proc. ACM SIGGRAPH, 1994, 381�395
[4] H. A. Sowizral, K. Rushforth and M. Deering. The Java 3D API specification. Addison-

Wesley, 1998

[5] D. Reiners, G. Voß, and J. Behr. OpenSG Basic Concepts. In Proc. OpenSG 2002
Symposium, Darmstadt, 2002.

[6] Open Scene Graph. http://www.openscenegraph.org/
[7] nVidia NVSG. http://developer.nvidia.com/object/nvsg_home.html
[8] K. J. Zuiderveld and M. A. Viergever. Multi-Modal Volume Visualization using Object-

Oriented Methods. In Symp. Volume Visualization, ACM SIGGRAPH, 1994, 59�66
[9] D. R. Nadeau. Volume Scene Graphs. In Proc. IEEE Symposium on Volume

Visualization, 2000, 49�56
[10] A. Sekar and A. H. Lee. Defining the Universe: Creating a Data Model for a Geospatial

Data Repository. In Proc. SIWs Spring Simulation Interoperability Workshop, 2004
[11] R. M. Toms and P. A. Birkel. Choosing a Coordinate Framework for Simulations. In

Proc. SISO Fall Simulation Interoperability Workshop, 1999
[12] C. Weisert. Point-Extent Pattern for Dimensioned Numeric Classes. ACM SIGPLAN

notices, 32(11): 17�20, 1997
[13] E. Gamma, R. Helm, R. Johnson and J. Vlissides. Design Patterns: Elements of

Reusable Object-Oriented Software. Addison-Wesley, 1995
[14] J. E. Bresenham Algorithm for computer control of a digital plotter. IBM Systems

Journal, 4(1): 25�30, 1965

	Design Pattern for Multi-Modal Coordinate Spaces
	Abstract
	1 Introduction
	2 Related work
	3 Design basics
	4 Transforming space
	5 Querying geometry objects
	6 Traversing the scene graph
	7 Operator overloading
	8 Real life examples
	9 Conclusions
	References

