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Abstract 
 
Applications for visualizing and/or modelling of complex 3D scenes, such as programs 
dealing with medical multi-modal 3D data sets, have to cope with a vast number of coordinate 
spaces. In such applications, treating a datum in the wrong coordinate space is one of the most 
common reason for bugs. Furthermore, the large number of coordinate transformations lead to 
code which is difficult to handle and understand. In this article a framework is presented that 
encapsulates coordinate space transitions, and offers the user a simple and logical entry point 
to access such transformations. It reduces the chance of �assuming� a wrong coordinate space 
to a minimum. The framework is very flexible, in the sense that it allows dynamic 
composition of scenes, with dynamic transformations between the scene objects. It further 
allows any type of transformation: affine, non-affine, many-to-one projections, 
discontinuities, etc. 
 
 
1 Introduction 
 
There are numerous applications with a large number of geometrical coordinate spaces (also 
known as coordinate systems). This is the case in e.g. interactive 3D graphics and modelling 
applications, medical applications dealing with (multi-modal) voxel volumes, algorithms 
handling complex dynamic mechanical structures, coordinate transformations for 
astronomical or geodetic purposes (such as GPS), and many others. The relationships between 
the different coordinate spaces can be static or dynamic, bijective or many-to-one, continues 
or contain discontinuities, and be affine or non-affine. 
When the amount of coordinate spaces is large, the code dealing with coordinate 
transformations may become complex and prone to errors. To overcome these problems, we 
developed a software design pattern, to transparently and robustly deal with multiple 
coordinate spaces. This framework especially aims at severely reducing the chance of making 
false assumptions, and reducing the complexity of the code. 
The framework can be applied for the transformation of data between related spaces of 
ordered n-tuples, such as vector spaces. It might be of interest to point out that these spaces 
are not necessarily Euclidean. For instance, a voxel space (a vector space representing voxel 
indices), whereby the voxels are not cubic (which is very common in e.g CT and MR 
volumes) is not Euclidean. Strictly speaking, the design pattern can also be applied to spaces 
of ordered n-tuples that are not vector spaces, i.e. spaces whose elements cannot be linear 
combined, such as e.g. manifolds. The only criterion is that a mapping exists between the 
spaces. 
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2 Related work 
 
An intuitive hierarchical data structure for managing the relations between different 
coordinate systems is the scene graph. Scene graphs are used in numerous graphics 
applications, toolkits, modelling and programming languages, such as VRML [1],  
Open Inventor [2], OpenGL Performer [3], Java 3D [4], Open SG [5], Open Scene Graph [6], 
nVidia NVSG [7] and many others. Where VRML is only able to describe the scene graph, 
the others also provide some means to transform points from one coordinate system to 
another. The transformations are, however, still very much driven by the user of these tools, 
i.e. it is his responsibility to keep track of which data are in which coordinate space, and 
whether and how it should be transformed. The framework that is presented here, is not 
intended to replace these toolkits. It rather is build on top of a scene graph, and thus could be 
used as an extension to the mentioned toolkits. 
Zuiderveld and Viergever [8] describe an Object-Oriented approach aimed at integrated 
visualization of multiple volumetric datasets, which also deals with coordinate systems. 
However, they chose to leave the coordinate transformations to the responsibility of the user 
of their framework. Nadeau [9] presents volume scene graphs, a structure for composing 
scenes containing volumetric data sets, where the scene graph is used to transform coordinates 
from world to image space. Other transformations, though, are not directly provided by his 
framework. 
In geospatial applications [10, 11] it often is desirable to express points in different geometry 
systems, such as geocentric, heliocentric or local coordinate systems. For reasons of 
efficiency or simplicity it can be desirable to express coordinates in flat earth or spherical 
earth coordinate systems, and for accuracy ellipsoid or geoid coordinate space may be 
required. The software paradigm in this paper can be used to easily query data in the desired 
coordinate system. 
There is a significant difference between a point and an extent, as Weisert [12] points out. 
This difference is particularly of importance when transforming data from one coordinate 
system to another one (e.g. translations do not affect the values of an extent, but they do affect 
the coordinates of a point).  
The here presented framework can be regarded as a software design pattern for dealing with 
large number of coordinate spaces. A general overview of design patterns is offered by 
Gamma et al. (�the gang of four�) [13]. 
 
 
3 Design basics 
 
We define �geometry classes� as a set of object classes, describing basic geometrical entities, 
such as points, vectors, lines, angles, planes, etc. To identify them easily, we use the prefix 
�geo�. Instances of these classes are generalized under the term �geometry objects�. It is our 
objective to easily query them in any given coordinate space. A further important class in our 
framework, is the 3D entity, which is a node in the scene graph. Any spatial object that can be 
drawn should be derived from the 3D entity class. But there can be also abstract 3D entities, 
that do not draw anything. A 3D entity contains a number of geometry objects, to describe its 
spatial properties. 
One of the first observations we made, is the fact that any 3D entity, which can be found in a 
scene graph, implicitly defines its own coordinate space. Consider a traditional 3D entity (e.g. 
a table), which is located in a parent space (e.g. a room). The object has a translation, which 
corresponds to the coordinate of the origin of the object expressed in its parent space. Further 
it can have a rotation, which corresponds to a rotation of its axes with regard to the axes of the 
parent space, and a scaling. In fact we have just described a rigid transformation between two 
coordinate spaces. 
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Figure 1: (a) the geoPoint class has internal coordinate values, and a reference to its internal 
coordinate space, (b) every 3DEntity contains a reference to its parent, and a spatial 
transformation with regard to its parent. 
 
In our software paradigm, an abstract coordinate space is an instance of a 3D entity, and 
therefore every instance of a class, inherited from the 3D entity class, always defines its own 
coordinate space. 
Further, we established that the position of a point is always defined in a coordinate space. 
This may be a trivial observation. In an application with many coordinate spaces, though, 
treating a datum in the wrong coordinate space is one of the most common causes for bugs, 
and may be difficult to track when coordinate spaces are similar or related. The same 
considerations are of course true for instances of other geometry classes, e.g. normals, lines, 
planes, etc. Therefore we provide all geometry classes, with a reference to the coordinate 
space they are internally defined in (see Figure 1a). In this way it is virtually impossible to 
�assume� a wrong coordinate space. 
The internal coordinate space of an instance of such a class is defined at construction of the 
instance, and stays fixed during the lifetime of the instance. This is particularly of importance 
when the relations between the coordinate spaces are dynamic. Imagine, for instance, a 
camera, which moves with respect to the depicted scene; the relation between the camera 
coordinate space and scene coordinate space is then dynamic. It matters whether the 
coordinates of a point are defined in camera space (e.g. relative to the view port corners), or in 
scene coordinates (e.g. relative to the position of an object in the scene). 
 
 
4 Transforming space 
 
The Transformation class describes the spatial mapping between an instance of a 3D entity 
and its parent in the scene graph (see Figure 1b). This is an abstract class, and specific 
transformation classes, such as affine transformations, are inherited from this class. 
The Transformation class possesses virtual functions to transform coordinates from its owner 
space to the parent of its owner, and vice versa (this approach is similar to the Visitor design 
pattern [13]). These functions return a boolean to indicate whether the requested 
transformation could be performed. In this way also many-to-one relations could be 
implemented; the function corresponding to the one-to-many direction would then always 
return false. Further, transformations that are only valid for a certain sub-space can use this 
mechanism, since they would return false for points outside the sub-space. Similar virtual 
functions are available for transforming all other geometry objects, like vectors, matrices, 
plane equations, etc. 
A rigid transformation can be described by translation and rotation only. In the case of an 
affine transformation (of which the rigid transformation is a sub class) the virtual 



transformation functions can be implemented by multiplying homogeneous coordinates  
(x, y, z, w), representing points or vectors, with the 4*4 transformation matrix (or inverted 
matrix, for the inverse transformation). A typical implementation for elastic (non-affine) 
transformations could use spline interpolation, driven by a volumetric mesh. 
Since no assumptions are being made about the type of transformation, the various relations 
in a scene graph might be of a different kind (e.g. affine and non-affine transformations could 
be found in the same scene graph, to depict for instance underwater scenes). 
 
 
5 Querying geometry objects 
 
One of the most essential functions that any geometry class has in our framework, is the Get 
function (see Figure 1a). The Get function allows to query a geometry object with respect to a 
given coordinate space. The Get function of e.g. the geoPoint class takes a reference to a 
coordinate space as input parameter, and returns the coordinate values of the point with 
respect to the passed coordinate space. 
If the passed reference to a coordinate space equals the internal space of a geometry object, its 
internal values are simply returned. If they are not equal, the internal values are transformed 
from the internal coordinate space to the destination one, passed as input parameter. In order 
to do this, the scene graph is traversed, delivering the path from the internal coordinate space 
to the destination one. The transformations between the intermediate coordinate spaces in the 
path are then applied to the geometry object. If a transformation returns false (thus it is not 
possible to transform the geometry object over that node), or if no path exists between the 
internal and destination space (i.e. they are not in the same scene graph), an exception is 
thrown. 
Four rigid transformations of a coordinate, as is shown in Figure 2a, take 2.7 µs on a Pentium 
IV 3.0 GHz machine. 
 
 
6 Traversing the scene graph 
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Figure 2: (a) Traversing the scene graph, (b) Building the path that represents the traversal of 
the scene graph. 
 
When coordinate space that is passed to the Get function of geometry object, is different than 
the internal one, the scene graph has to be traversed. In order to perform this efficiently two 
arrays with references to the nodes in the scene graph are built. The ascending array starts 



with internal coordinate space of the geometry object. Iteratively the parent of the last node in 
the array is added, until the top node is reached. The descending array starts with the 
destination coordinate space, and also here parents are added until the top node is reached. 
Now it is checked whether the last node (the top node) in both arrays is the same. If this is not 
the case, meaning that the internal and destination coordinate spaces are not in the same scene 
graph, and an exception is thrown. 
After the check, the nodes at the end of both arrays are removed if they are the same. This is 
repeated until the ends are different, see Figure 2b. 
The remaining nodes now form the path that has to be traversed. The data of the geometry 
object is consequently transformed by the nodes in the ascending array, starting with first 
node in the array. Then the data is transformed by the nodes in the descending array, calling 
the inverse transformation functions. This array is parsed starting from the end, see Figure 3. 
Note that the order of this algorithm is only determined by the height of the scene graph, not 
by its width. 
 
 
7 Operator overloading 
 
Another important feature is the fact that we overloaded the operators of the geoPoint and 
geoVector classes. Note that two points cannot be added together, but a point and a vector can 
be added, delivering a new point [12]. By overloading the operators, we can even add points 
and vectors, which are internally expressed in a different coordinate system. 
For instance let us consider the position of an object in the scene, expressed by an instance of 
the geoPoint class, with the world coordinate system as internal space (expressed in e.g. 
millimeters), and a geoVector instance, expressing a mouse movement, with the view port 
coordinate system as internal space (in pixel coordinates). Suppose we want to translate the 
object by the mouse movement. The corresponding code could be as simple as  
objPos = objPos + mouseMove; (see Figure 3). Note that the internal coordinate spaces 
of the variables in this expression is different. 
The overloaded operator+ of the geoPoint class will take care that mouseMove is 
transformed to the coordinate space of objPos. The Get member function of the geoVector 
class will transform the internal values of the vec variable from its own internal space to the 
internal space of the objPos variable, and then the two can be added without any problems. 
This feature leads to very powerful and simple code, as illustrated in the TranslateObject 
function, since the code expresses what you want to achieve conceptually, instead of 
expressing all kinds of difficult coordinate transformations. 
 
 
void TranslateObject(geoPoint& objPos, const geoVector& mouseMove) 
{ 
    objPos = objPos + mouseMove; 
} 
 
geoPoint geoPoint::operator+ (const geoVector& vec) const 
{ 
    return geoPoint(m_coordinates + vec.Get(m_space), m_space); 
} 
 
Figure 3: The function TranslateObject illustrates the code that a user of the Coordinate Space 
Design Pattern would write. The operator+ below, shows how the design pattern deals with 
this code internally. The mouseMove variable is queried in the coordinate space of the objPos 
variable. 
 
 



8 Real life examples 
 
8.1 Mouse click on a voxel volume 
 
Take an iso-surface rendered voxel volume, and suppose we want to determine which surface 
voxel lies under the mouse cursor at a mouse click. In order to do so, a line through the cursor 
position (viewing ray) has to be intersected with the isosurface. This line is defined by the 
cursor position and the camera normal, in the case of a parallel projection, and by the cursor 
position and the camera 
focus point in the case of a perspective projection. Using the presented framework, it is no 
problem to define a line from two points which are constructed in different coordinate 
systems. After the line has been defined, it can be easily obtained in voxel space, using the 
Get function. Then it should be passed to a 3D variant of Bresenham�s algorithm [14], to 
deliver the intersection point. 
 
8.2 Defining points of interest 
 
Consider an application with two windows next to each other, in order to view two registered 
multi-modality volumetric data sets. In one view a slice of the reference data set is displayed, 
while in the other the corresponding interpolated surface through the other data set is shown 
(non-affine registration). A mouse click marks a point of interest in one data set. The point 
can be constructed as follows: geoPoint mousePnt(viewport1.x,viewport1.y,0); 
Drawing the corresponding point in the other view is as simple as: 
Plot(mousePnt.Get(viewport2));, assuming that the Plot function is library function 
that takes pixel coordinates as input. 
Note that the Get function transforms the mousePnt coordinates first from viewport1 
(pixels) to world coordinates (millimeters), which is a rigid transformation. Then the 
coordinates are transformed from world coordinates to the frame of reference of volume2, 
which is a non-affine transformation, executed by a different transformation class. Finally the 
coordinates are transformed from the frame of reference to viewport2, which is a rigid 
transformation again, delivering the pixel coordinates of the point to be plotted. This complete 
procedure remains hidden for the user of the framework. 
 
8.3 Gantry-tilt CT volumes 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4: Planning the location of the CT slices, with tilted gantry. The gantry is tilted to 
avoid radiating the eyes, while capturing a maximum of relevant anatomical data. 
 
CT volumes, which have been acquired with a tilted gantry, produce a voxel space with non-
orthogonal axes (see Figure 4). Typically such volumes are resampled on a orthogonal grid 
for volumetric visualization, leading to loss of image quality. However, it is possible to 
encapsulate the shearing (skew) that is introduced by the non-orthogonality in an affine 
transformation (e.g. expressed in a 4*4 matrix). In this way the data can be queried without 
resampling, using our framework. The fact that the data is stored in a non-orthogonal grid 



remains completely hidden for a programmer who accesses it through the coordinate space 
design pattern, since he can define positions in e.g. patient space (millimeters), and the 
framework takes care of the transformation to the skewed space. 
 
8.4 Follow camera orientation 
 
Suppose we want one single object in the 3D scene always to be presented with the same side 
to the camera. This object, however, should be positioned and scaled according to its location 
in the scene (i.e. moving camera could change only the rotation of the object, but not its 
translation or scaling). To solve this task, we can define to geoVector instances in camera 
space, representing the x- and y-axis of the camera. For the x-axis this can look like: 
geoVector x_camera(1,0,0,cameraSpace); Now we will rotate the object such that 
its x-axis will point in the direction of the camera x-axis. To do so we query the camera x-axis 
in the coordinate space of the object: x_camera.Get(objectSpace); The nice thing is 
that this produces the orientation of the camera x-axis in the object space instantaneously, no 
matter how many nodes there are between the camera and the object in the scene graph. The 
vector still has to be normalized, and then the dot product between this vector and the object 
x-axis (which is simply (1,0,0)) delivers the cosine of the angle that we should rotate. The 
cross product delivers the rotation axis. The same procedure can  be followed to orient the y-
axis correctly. 
 
 
9 Conclusions 
 
In this article we have introduced a generic software solution for a flexible and transparent 
design pattern for handling multiple coordinate spaces. The proposed framework is especially 
powerful when the number of coordinate spaces is large and their relations are dynamic, such 
as is e.g. the case in multimodality medical applications. 
The complexity of dealing with multiple coordinate spaces lies in the transformation between 
the individual spaces. The strength of the proposed framework is the fact that these 
transformations are maintained at a single spot, and in the rest of the code no awareness of 
these transformations is needed. The code expresses what you want to achieve conceptually, 
instead of expressing all kinds of difficult coordinate transformations. 
In the case that the actual values of a geometry object are needed with respect to a certain 
coordinate space, these can be only obtained by explicitly passing the desired coordinate 
space to the Get operation. This severely reduces the chance of �assuming� a wrong 
coordinate space, one of the most common causes of bugs in such applications. If a 
transformation is needed from the internal coordinate space to the requested one, the 
transformation is performed automatically, and hidden from the user of the function call. 
The design pattern has been successfully implemented in two medium and three large scale 
software projects. 
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