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ABSTRACT
Elastic intra-patient registration can be used to correct for
local motion within biomedical images. The application of
elastic registration during interventional treatment is seri-
ously hampered by its considerable computation time. The
Graphics Processing Units (GPU) can be used to accelerate
the calculation of such elastic registrations, without chang-
ing the basic registration algorithm. This article discusses
how elastic image registration, using cubic B-spline based
deformation fields, efficiently can be approached to make
use of the vast processing power of the GPU. Our approach
employs an efficient GPU-based cubic B-spline deforma-
tion field, and also calculates the similarity measure and its
derivative on the GPU.
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1 Introduction

The objective of registration algorithms is to find a spa-
tial mapping between two image datasets. Typically an
intensity-based registration algorithm consists of a simi-
larity measure, indicating the quality of a given spatial
mapping, and an optimization algorithm, which iteratively
searches the optimum (maximum or minimum, depend-
ing on the measure) of the similarity measure. The search
space consists of the multi-dimensional control variables of
the spatial mapping.

The advantage of elastic intra-patient image registra-
tion over rigid registration is the fact that it can take local
deformation of anatomical structures into account. A cubic
B-spline based deformation field is sufficiently smooth to
model local elastic displacements of anatomical structures
(e.g. organs or breast) [1, 2]. However, the application of
elastic registration during interventional treatment is still
seriously limited by the considerable computation time,
which is determined by the very large parameter space of
the elastic deformation.

An approach to reduce the computation time, without
changing the essential algorithm, is the employment of the
vast computation power of modern off-the-shelf Graphical
Processing Units (GPU). Though the overall computation

power of the GPU nowadays surpasses the power of the
CPU, its performance does not scale equally well for any
type of algorithm. In the literature there are several publica-
tions dealing with GPU-based elastic registration [3, 4, 5],
using a piece-wise linear deformation field. We propose a
GPU-driven cubic B-spline deformation field, which yields
a smoother warping, and therefore can be considered to be
a more realistic model for organic deformations.

Further we discuss how the capture range of the elas-
tic registration can be enlarged. It is well known [6] that
derivative-based optimizers (e.g. quasi-Newton-like opti-
mizers) only evolve to correct solution if the initial posi-
tion in parameter space is sufficiently close to the optimum.
Our approach to elastic registration lends itself very nicely
to use derivative information from larger scale-spaces [7].
This allows the optimization process to take information of
a larger neighbourhood into account, and therefore is less
prone to get stuck in a local optimum.

2 Method

2.1 Similarity measure

The similarity measure used in intensity based registration
algorithms can be expressed as

E = E(A,Bτ ) (1)

wherebyE represents the similarity measure,A the refer-
ence image, andB the floating image.Bτ is the floating
image deformed to the coordinate space of the reference
image. Let~i be a position in the reference image space,
and the function~τ(~i) be the deformation of the reference
image coordinate system to the floating image coordinate
system. ObviouslyBτ and B are connected as follows:
Bτ (~i) = B(~τ(~i)).

In this article we will restrain ourselves to the class
of algorithms, in which the similarity measure can be ex-
pressed as a sum of contributions per spatial element (pixel
for 2D, voxel for 3D,etc.). Sum of Squared Differences
(SSD) and Cross-Correlation (CC) are examples of mem-
bers of this class. This class generally can be written as



follows:

E = 1
‖I‖
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Heree denotes the contribution to the similarity measure
per spatial element, and~i ∈ I ⊂ ZN represents the set of
N -dimensional discrete spatial positions (i.e. pixel or voxel
positions in the image).

The deformation~τ is driven by a set of parameters
~cj . It is this set of parameters that is manipulated by the
iterative optimization algorithm. In order to obtain a bet-
ter prediction of parameters used in the next iteration, the
Jacobian matrix, containing the partial derivatives of the
similarity measure to the parameter spaceδE/δcj,m is re-
quired [8]. The partial derivative can be decomposed into
the following product [2]:

δE

δcj,m
=

1
‖I‖
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δe(~i)
δBτ (~i)

δB(~x)
δxm
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~x=~τ(~i)

δτm(~i)
δcj,m

(3)

2.2 Deformation field

Similar to Kybic and Unser [2], we use a B-spline driven
deformation field. The deformation field then can be de-
scribed by the following equation:

~τ(~i) =~i +
∑

j∈Ic

~cj · βn(~i/~h− j) (4)

The deformation for position~i is given by~τ(~i). The set of
control points~cj , which drive the deformation, is denoted
by Ic ⊂ ZN . Vector~h represents the spacing of the control
points, which is required to be integer. Since~i is added to
the sum, the identity deformation corresponds to all control
points being zero.βn(~i) is theN -dimensional tensor prod-
uct of an uniform B-spline function, wherebyn indicates
the degree of the B-spline.

2.3 Derivatives

As can be understood from equation 4, the derivative of the
deformation fieldδτm(~i)/δcj,m simply is a constant term:
βn(~i/~h − j). Since the control points are evenly spaced, a
fixed template of widthn·h can be pre-computed to express
this derivative. During the calculation of the derivative, the
template is then shifted over the image, depending on index
j.

In contrary to [2], we do not obtain the derivative
of the deformed floating image analytically. We rather
use an image based approach, employing a convolution
with Sobel-like kernels, which approximates the Gaussian
derivative. Such a convolution can be very efficiently im-
plemented to run on the GPU.
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Figure 1. The cubic B-spline, and its 1st order derivative.
We use the variant of the B-spline function that is centered
around the origin, since this allows us to exploit its symme-
try in the GPU programs.

The usage of kernels also allows us to determine the
derivative in different scale-spaces, by scaling the B-spline
derivative: β′3(x/m). Employing a higher scale-space al-
lows to increase the capture range of the optimization al-
gorithm, since the derivative is based on a wider spatial
range [9]. In order to obtain a derivative of the sim-
ilarity measure that is fully based on a different scale-
space, the floating and reference image should be Gaussian
blurred. Our first tests show, however, that merely bas-
ing δB(~x)/δxm on a larger scale-space, by using bigger
derivative kernels (see figure 2) already results in an en-
larged capture range.

The derivative of the first multiplicand in equation 3
depends on the used similarity measure. In table 1 the
derivatives for SSD and CC are given.

3 GPU implementation

3.1 Two passes

The similarity measure for a given set of transformation
parameters, is calculated on the GPU in two passes. These



Similarity measure Contribution per pixel Derivative

Sum of Squared Differences (SSD)e(~i) = (A(~i)−Bτ (~i))2 δe/δBτ = 2 · (A(~i)−Bτ (~i))
Cross-Correlation (CC) e(~i) = A(~i) ·Bτ (~i) δe/δBτ = A(~i)

Table 1. Similarity measures, and their derivative with respect to the deformed image.
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Figure 2. The3 · 3 and5 · 5 derivative kernel in x-direction,
based on the 1st order derivative of the cubic B-spline (see
fig. 1). Larger kernels can be used to obtain derivatives in
higher scale-spaces.

two passes also yield the first order derivatives (Jacobian
matrix). In the first pass, the floating image is deformed
according to the passed parameters. Given this transformed
image, in the second pass the contribution of each pixel to
the similarity measuree(~i), the derivative of the similar-
ity measure to the deformed floating imageδe(~i)/δBτ (~i),
and the derivative of the floating imageδB(~x)/δxm with
~x = ~τ(~i) are all calculated at once. The derivative of the
image space to the deformation control points is constant,
and does not need to be computed in every iteration.

3.2 Cubic interpolation

The first pass comprises the B-spline driven deformation
of the floating image. Sigg and Hadwiger [10] have de-
scribed how cubic B-spline interpolation can be performed
efficiently by the GPU. Their method is based on decom-
posing the cubic interpolation in2N weighted linear inter-
polations, instead of4N weighted nearest neighbour inter-
polations. Since linear interpolations are hardwired on the
graphics hardware, they can be performed much faster than
addressing the set of nearest neighbour lookups, they are
composed of.

The basic idea can be understood by considering 1D
linear interpolation, which can be expressed as follows:

fi+α = (1− α) · fi + α · fi+1 (5)

with i ∈ N and α ∈ [0, 1]. Building on this equation,
the weighted addition of two neighbouring samples can be
rewritten to be expressed as a weighted linear interpolation:

a · fi + b · fi+1 = (a + b) · fi+(b/(a+b)) (6)

Evaluating the deformation for any given position,
using a cubic B-spline, means the weighted addition of
4N adjacent control points, whereby the weights are de-
termined by the cubic B-spline function (see figure 1). In
the 1D case this looks like:

f̃i+α = w0(α) · fi−1 + w1(α) · fi +
w2(α) · fi+1 + w3(α) · fi+2

(7)

The determination of the weights is further facilitated by
the fact thatw0 is always located in the first quadrant of the
cubic B-spline,w1 always in the second,etc. This leads to
the following set of weights:

w0(α) = 1
6 · (1− α)3

w1(α) = 2
3 − 1

2 α2 · (2− α)
w2(α) = 2

3 − 1
2 (1− α)2 · (2− (1− α))

w3(α) = 1
6 · (α)3

(8)

Using equation 6, we can decompose equation 7 into
two weighted linear interpolated lookups.

f̃i+α = g0 · fi+h0 + g1 · fi+h1

g0 = w0 + w1

g1 = w2 + w3

h0 = (w1/g0)− 1
h1 = (w3/g1) + 1

(9)

Of course this scheme can easily be extrapolated to
theN -dimensional case, wherebyg~j =

∏
gjk

, and~h~j =∑
~ek · hjk

, with k denoting the axis and~ek the basis vec-
tor. In the 3D case this means that 64 nearest neighbour
interpolations can be replaced by 8 linear interpolations.
On modern GPUs that means a considerable performance
gain.

3.3 Cubic B-spline deformation

Considering equation 9, it can be observed that the weights
g0, g1, h0 andh1 only depend on the B-spline basis func-
tion, and not on the pixel/voxel values in the image. This
means that they are only dependent onα. Since the B-
spline, used for deformation, is a function of~i/~h, with ~h
being constant, the weightsg0, g1, h0 andh1 depend only
on the pixel position, and can be pre-computed for the en-
tire image.



The memory usage can be reduced by considering the
fact that the weights are periodic per~h pixels, and therefore
only this segment needs to be computed. Even more can be
won by taking advantage of the fact that the B-spline ten-
sor product produces a separable kernel. Therefore, only
1D arrays of widthhk need to be stored, wherebyg0, g1,
h0 and h1 can be combined in one RGBA lookup table.
The difference with the method in [10] is the fact that there
is no linear interpolation needed between the entries in the
1D table, since the 1D table is always addressed exactly at
an entry index, due to the exact mapping of the table width
on the control point interval. The absence of the need to
linearly interpolate in the 1D array leads to a higher accu-
racy, since the fetched parametersg andh are exact (apart
from discretization). This means that forN -dimensional
elastic registration, the cost of the cubic deformation per
spatial element (i.e. pixel or voxel) isN nearest neighbour
lookups in 1D tables, and2N linear interpolated lookups in
the control point texture.

The Cg code [11] below illustrates this process for the
2D case.

float2 deformCoordinates(
float2 coordSource : TEXCOORD0,
// 1D table with weights in x-direction:
uniform sampler1D tex_hg_x,
// 1D table with weights in y-direction:
uniform sampler1D tex_hg_y,
// 2D texture with control points:
uniform sampler2D tex_cp,
// size of texture tex_cp:
uniform float2 nrCP,
// 1 / nrCP:
uniform float2 rec_nrCP

) : COLOR
{

// The coord in the 1D table: transform the
// coordinate from [0,1] to [-0.5, nrCP-0.5]
float2 coord_hg = coordSource * nrCP - 0.5;

// lookup the weights in the 1D tables
float3 hg_x = tex1D(tex_hg_x, coord_hg.x).xyz;
float3 hg_y = tex1D(tex_hg_y, coord_hg.y).xyz;

// determine the coordinates for linear
// interpolation
float2 coord00 = coordSource;
float2 coord10 = coordSource;
coord00.x += hg_x.x * rec_nrCP.x;
coord10.x += hg_x.y * rec_nrCP.x;

float2 coord01 = coord00;
float2 coord11 = coord10;
coord01.y += hg_y.x * rec_nrCP.y;
coord11.y += hg_y.y * rec_nrCP.y;

// fetch the four linear interpolations
float2 tex_cp00 = tex2D(tex_cp, coord00).xy;
float2 tex_cp10 = tex2D(tex_cp, coord10).xy;
float2 tex_cp01 = tex2D(tex_cp, coord01).xy;
float2 tex_cp11 = tex2D(tex_cp, coord11).xy;

// weigh along the y-direction
tex_cp00 = lerp(tex_cp00, tex_cp01, hg_y.z);
tex_cp10 = lerp(tex_cp10, tex_cp11, hg_y.z);

// weigh along the x-direction

tex_cp00 = lerp(tex_cp00, tex_cp10, hg_x.z);

return coordSource + tex_cp00;
}

The outcome of this procedure is aN -dimensional
offset, which should be added to the current location. This
delivers the coordinate in the original floating image. After
this coordinate has been obtained the corresponding inten-
sity of the floating image at this location has to be found.
This can be done by simple linear interpolation (hardwired
on the GPU), or by cubic interpolation as described by Sigg
and Hadwiger [10].

3.4 Similarity measure & derivatives

In the second pass we bind the deformed floating image and
the reference image as textures, and iterate over all spatial
elements.

The derivative of the floating image has to be calcu-
lated at~τ(~i) for all~i ∈ I, wherebyI is the set of reference
image grid points. This derivative is approximated by cal-
culating the gradient of the deformed floating image. In or-
der to obtain the gradient image at a given spatial element,
its 3N neighbourhood has to be evaluated. This neighbour-
hood is then multiplied with the derivative kernels for every
axis direction. For the multi-scale approach the3N kernels
are replaced by larger kernels of size(2 · n + 1)N (see
figure 2), and the neighbourhood that has to be sampled,
should be enlarged correspondingly. The sampling of the
neighbourhood, especially for large kernels, can be further
optimized using the principle described in equation 6.

After sampling the reference image at the correspond-
ing position, it is rather straightforward to determine the
contribution to the similarity measure, and the derivative
of the similarity measure with respect to the floating image
(see table 1).

Summarizing, the gradient vector is determined for
each spatial element, and the contribution to the sim-
ilarity measure and its derivative is established for the
respective spatial element. The results are written to
an output texture. For 2D registration only one RGBA
output texture is enough, for 3D registration two out-
put textures have to be used. In OpenGL this can be
done by using theGL_EXT_framebuffer_object
andGL_ARB_draw_buffers extensions.

The operations that are performed per pixel are de-
scribed in the following pseudo Cg code [11] for the 2D
case:

float3 secondPass(
float2 coord : TEXCOORD0,
uniform samplerRECT tex_ref,
uniform samplerRECT tex_float,
uniform samplerRECT sobel_x,
uniform samplerRECT sobel_y

) : COLOR
{

// Sample the 3*3 neighbourhood, and process
// the samples into the gradient



Figure 3. A frame from an angiographic x-ray sequence,
showing the left coronary arteries.

float2 gradient;
gradient.x = sobel_x * neighbourhood;
gradient.y = sobel_y * neighbourhood;

// sample the current pixel position
float ImgFloat = texRECT(tex_float, coord).x;
float ImgRef = texRECT(tex_ref, coord).x;

// Similarity measure: SSD
float difference = ImgRef - ImgFloat;
float sim_measure = difference * difference;
float derivative = 2.0f * difference;

// Pre-multiply the gradient with the
// derivative of the sim. measure
gradient *= derivative;

return float3(gradient.x, gradient.y,
sim_measure);

}

4 Results

Using the described approach, it took 402 ms to perform an
elastic 2D registration of two images consisting of10242

pixels, using82 control points. A single iteration in the op-
timization process, which consists of deforming the float-
ing image and calculating the similarity measure and Ja-
cobian matrix, took on average 36.9 ms. We used a 2.33
GHz Pentium 4 system, with 2 GB RAM memory, and
nVidia QuadroFX 3500 graphics card with 256 MB on
board memory. Except for the GPU, we did not use any fur-
ther optimizations, like using SSE2 instructions or multi-
threading.

We used the described algorithm to register all the im-
ages in an angiographic x-ray sequence, depicting the coro-
nary arteries. The sequence consisted of 83 images. An
example of such an image is shown in figure 3. To visu-

Figure 4. A checkerboard representation of a fragment of
the deformation field, used to register a frame from an an-
giographic x-ray sequence to a reference frame in the same
sequence.

alize the vessels in x-ray images, iodene contrast medium
is injected. In the sequence it is visible how the contrast
medium enters the vessel tree, and finally washes out. The
purpose of the elastic registration is to correct for the mo-
tion due to the beating of the heart. As reference image
we chose the image with most contrast medium visible.
The other frames are then registered to the reference im-
age, starting with the frame that is temporal adjacent to the
reference frame. The deformation parameters are always
initialized with the parameter set that was found with the
registration of the previous frame. Since the movement be-
tween adjacent frames is small, the algorithm can converge
quicker and more robustly to the optimal deformation.

The movement of the main bifurcations is corrected
very nicely when using82 control points. The smaller ves-
sels, however, still show quite some rest motion. A multi-
resolution control point approach, as described by Schnabel
et al. [12] could help to reduce the rest motion, without ex-
ploding the size of the parameter space.

When inspecting the deformations of the images in
the sequence using a checkerboard image, like shown in
figure 4, the periodic movement of the heart was very
nicely visible. This provides an unintended application of
the elastic registration, when it is employed to a cardiac
angiographic image sequence; the amplitude of the control
point that shows the largest movement, could serve as indi-
cation of the phase of the cardiac cycle,e.g. when no actual
ECG signal is available.



5 Conclusions

In this article we have described how intensity based elas-
tic registration algorithms, using a B-spline deformation
model, efficiently can be implemented to run on the GPU.
We have discussed the various aspects of an efficient and
accurate approach to cubic B-spline deformation on the
GPU. Further we demonstrated how the similarity measure,
as well as its derivative, can be calculated by the GPU,
using a two-pass solution. Also we have indicated how a
multi-scale approach of the derivative can help to enlarge
the capture range, when employing quasi-Newton like op-
timizers.

In future work we would like to further explore the
possibilities of a multi-scale approach to the derivative of
the similarity measure. Also we would like to incorporate
a multi-resolution approach [12], concerning the control
points, in order to obtain finer deformations, where nec-
essary.
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