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ABSTRACT 
Volume Rendering methods employing the GPU capabilities offer high performance on off-the-shelf hardware. 
In this article, we discuss the various bottlenecks found in the graphics hardware when performing GPU-based 
Volume Rendering. The specific properties of each bottleneck and the trade-offs between them are described. 
Further we present a novel strategy to balance the load on the identified bottlenecks, without compromising the 
image quality. Our strategy introduces a two-staged space-skipping, whereby the first stage applies bricking on a 
semi-regular grid, and the second stage uses octrees to reach a finer granularity. Additionally we apply early ray 
termination to the bricks. We demonstrate how the two stages address the individual bottlenecks, and how they 
can be tuned for a specific hardware pipeline. The described method takes into account that the rendered volume 
may exceed the available texture memory. Our approach further allows fast run-time changes of the transfer 
function. 
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1. INTRODUCTION 
New developments in medical imaging modalities, 
numerical simulations, geological measurements, etc. 
lead to ever increasing sizes in volumetric data. The 
ability to visualize and manipulate the 3D data 
interactively is of great importance in the analysis and 
interpretation of the data. The interactive 
visualization of such data is a challenge, since the 
frame rate is heavily depending on the amount of data 
to be visualized. Inherently, the demand for faster 
visualization methods is always existing, in spite of 
hardware innovations. 

An established method for interactive volume 
rendering on consumer hardware is GPU-based 
texture slicing [Ake93, CCF94, CN93, EE02, 
EKE01, MGS02, RGW+03, KW03]. Although this 
approach performs very well compared to CPU-based 
algorithms, since it benefits from the parallelism 

available in the GPU pipeline, it can be accelerated 
significantly by taking into account the various 
bottlenecks that are encountered in the graphics 
hardware. Every individual bottleneck has a different 
optimal data chunk size and data throughput. In this 
article, we present a novel approach to accelerate 
GPU-based volume rendering that allows to tailor 
and balance the load on the individual bottlenecks to 
reach an optimal exploitation of the graphics 
hardware power. 

In section 2, we present an overview of related work. 
Section 3 discusses the main bottlenecks that come 
into play when performing GPU-based volume 
rendering. Then an outline of the proposed approach 
is drawn in section 4. Sections 5, 6 and 7 deal with 
the details of our approach. In section 8, the results 
are presented and discussed, and in section 9 we 
summarize our conclusions. 

2. RELATED WORK 
The first rendering methods using the 3D texture 
capabilities of the graphics hardware were proposed 
by Cullip and Neumann [CN93], Akeley [Ake93] and 
Cabral et al. [CCF94]. Essentially these techniques 
consist of drawing polygons, which slice the volume 
in a back to front order. The data set is mapped as 
texture information on the polygons using tri-linear 
interpolation. The successive polygons are blended 
into the existing image. 
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Bricking is a technique to divide the volume data set 
into chunks, called bricks [Eck98, WWE04]. It can 
be employed to deal with data sets exceeding the 
available texture memory. The bricks have then a size 
that is equal to or smaller than the size of the texture 
memory, and are loaded sequentially from main 
memory into the texture memory while rendering. 
However, this leads to significantly lower frame rates, 
since the bus architecture, connecting the graphics 
hardware to the main memory and CPU, proves to be 
a major bottleneck. Tong et al. [TWTT99] propose a 
bricking technique that allows skipping empty 
regions. Their method, however, requires new 
textures to be generated for every change of the 
transfer function, which is time consuming for very 
large data sets. 

Texture compression can help to fit the entire volume 
in the main memory, and to alleviate the bus 
bottleneck. However, all presently available 
compression methods supported by graphics 
hardware (S3TC, FXT1, DXT1, VTC, etc) are 
limited to lossy 8-bit RGB(α) compression, which 
make them unsuitable for the compression of the 
(often 12- or 16-bit) scalar values found in medical 
data, and therefore we do not use them. Further, 
Meissner et al. [MGS02] show that the lossy 
compression algorithms severely reduce the image 
quality. Wavelet compression, as proposed by Guthe 
et al. [GWGS02] is a promising technique, but there, 
not all parts of the volume are rendered at the highest 
resolution. 

Not rendering all parts of the volume in the highest 
resolution possible is a way to reach higher frame 
rates, as demonstrated by LaMar et al. [LHJ99], 
Weiler et al. [WWH+00], Boada et al. [BNS01] and 
Guthe et al. [GWGS02]. This is particularly suited to 
increase the render speed for perspective projections 
in a small view port, focusing on a detail of the 
volume. However, orthogonal projections of the 
entire volume in high resolution view ports, as is 
common in medical applications, can only profit from 
this technique at the cost of the image quality. 

Space-skipping and space-leaping are techniques to 
accelerate volume rendering, that origin from ray-
casting methods, see e.g. Levoy [Lev90], Zuiderveld 
et al. [ZKV92] and Yagel and Shi [YS93]. It is based 
on skipping empty parts of the volume. The idea of 
space-skipping can be applied to texture-mapping 
volume rendering as has been shown by Westermann 
and Sevenich [WS01]. 

Octree is an established multi-level data structure 
when dealing with voxel volumes, which has been 
used in numerous different applications. E.g. 
Srinivasan et al. [SFH97] apply an octree structure in 
volume rendering. Orchard and Möller [OM01] 

demonstrated the benefits of using adjacency 
information in splatting volume rendering. 

Parker et al. have combined bricking and multi-level 
data structures to accelerate CPU-based iso-surface 
ray-tracing of volume data sets on multi-processor 
platforms and clusters [PSL+99, DPH+03]. Grimm et 
al have applied a two-staged space skipping, based on 
bricking and octrees, combined with gradient 
caching, to CPU-based ray-casting [GBKG04]. 

Roettger et al. [RGW+03] describe a GPU-based pre-
integrated texture-slicing including advanced 
lighting. The authors also describe a GPU-based ray-
tracing approach with early ray termination. Krüger 
and Westermann [KW03] propose a method to 
accelerate volume rendering based on early ray 
termination and space-skipping in a GPU-based ray-
casting approach. The space-skipping addresses the 
rasterization bottleneck, using a single octree level 
only. 

We have combined some of the techniques cited 
above, to accelerate GPU volume rendering on a 
single workstation, using off-the-shelf hardware. 
Often we found that acceleration of volume rendering 
has been treated as a singular problem to solve. We 
rather focus on the individual bottlenecks that are 
encountered while performing volume rendering, and 
tailor the different techniques to address specifically 
those bottlenecks.  

3. BOTTLENECKS 
Figure 1 illustrates the graphics pipeline, employed 
for GPU-based volume rendering [Zel02]. Here we 
discuss the most important points in the pipeline that 
result in a bottleneck. 
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Figure 1: The graphics hardware pipeline and its 
bottlenecks [Zel02], light grey: memory units, 
dark grey: data structures, blue: processing units, 
red: bottlenecks. 

The bus - The volume data has to be transferred 
over the bus from the system memory into the 



graphics card memory. Since this is the slowest part 
of the entire pipeline, these transfers have to be as 
few as possible. 

Triangle throughput - The triangle throughput 
is mainly limited by the vertex shading and triangle 
setup phase. A straight forward implementation of 
texture-mapping volume rendering would involve 
only few triangles, but techniques for space-skipping 
may increase the amount of triangles considerably. If 
the triangle count becomes too high, this will become 
a limiting factor for the frame rate. 

Rasterization - When performing volume 
rendering based on texture slicing, the vast majority 
of the pixels on the screen are accessed multiple 
times. Space-skipping techniques may be used to 
reduce the amount of pixels to be accessed, but this 
also increases the triangle count. 

Texture cache size - Texture lookup is one of 
the more time consuming operations performed 
during the rasterization step. When the texture fits in 
the cache, these lookup operations will be faster. 

Fragment shader - Fragment shader programs 
impact the duration of the rasterization step. Simple 
fragment programs, such as applying a lookup table, 
generally do not limit the frame rate, however more 
complex operations, such as specular lighting 
[MGS02, RGW+03], multi-dimensional transfer 
functions [KKH01] or pre-integrated rendering 
[EE02, EKE01, RGW+03], can form a bottleneck. 
Especially fragment programs that perform multiple 
texture lookups (e.g. on-the-fly gradient calculation 
for specular lighting) are relatively slow. 

4. OUR APPROACH 
When performing volume rendering usually only a 
fraction of all voxels actually contribute to the final 
image, since a relatively small amount of voxels are 
of interest and another amount of them are occluded. 
In 3D medical data sets (obtained by e.g. ultrasound, 
CT, MR or rotational angiography [KodBA98, 

vdB03]) the anatomical structures of interest 
encapsulated in the data sets occupy only a part of the 
total data. Typically 5% to 40% of all voxels contain 
visible data, and even highly filled CT or MR data 
sets rarely exceed 55%. Especially vascular data sets 
can be marked as sparse data sets, since vessels, due 
to their tubular form, occupy only a small percentage 
of the volume (1% to 8%). 

In this article, we seek to reach the maximum benefit 
in exploiting skipping void parts of the volume 
(space-skipping). The novelty we introduce lies in 
dividing the space-skipping in two stages; a course 
division using bricking (figure 2a) and a finer one 
using octrees (figure 2b). These steps are based on an 
analysis of the bottlenecks encountered in the 
graphics pipeline when performing texture-mapping 
volume rendering. The first stage, bricking, is 
chopping the volume in so called texture bricks. The 
bricks are loaded into the video memory, to serve as 
data for the volume rendering algorithm, which is 
executed by the GPU. The bricks address the bus- 
and texture cache size-bottleneck. To further alleviate 
the load on the fragment shaders, we additionally 
perform early ray termination to each brick. This 
benefits especially highly-filled data sets. The second 
stage is employing an octree within each brick. The 
octrees address the rasterization bottleneck. As we 
demonstrate, the two stages have to be balanced, 
because lifting one bottleneck may overload another 
bottleneck (e.g. rasterization bottleneck versus 
triangle throughput bottleneck). 

The role of the transfer function in volume rendering 
is to map the scalar voxel information to optical 
properties (e.g. color and opacity) [KKH01]. The 
above described approach is implemented such that 
the flexibility to change the transfer function at run-
time is preserved. This offers the possibility to focus 
on different scalar ranges in the volume, without 
lengthy calculations. To accomplish this, the 
unmodified scalar voxel values are stored in the brick 
textures, and a fragment shader program is used, to 
lookup the RGBα values post-interpolatively. 

 
(a) 
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Figure 2: The same volume fragment, rendered with (a) bricking cubes visible, (b) octree cubes visible 
(note the various cube sizes) and (c) both bricking and octree cubes visible 



5. BRICKING 
As mentioned in section 2, the voxel volume can be 
divided into chunks, called bricks, in order to cope 
with voxel data sets sizes exceeding the size of the 
texture memory of the graphics hardware. Note that 
our bricks contain the original scalar values of the 
voxel volume, thus the values before applying the 
transfer function. This enables us to change the 
transfer function on the fly, since a transfer function 
change does not require creating new textures. 

To obtain a correct interpolation at the bricks' 
boundaries it is necessary that the data held by 
adjacent bricks overlap. The overlap depends on the 
convolution kernel used for interpolation [ML94], 
and should correspond to (kernelsize - 1). For nearest 
neighbor interpolation that means that no overlap is 
needed, since the width of the kernel is one. For tri-
linear interpolation the overlap should be one voxel 
in every direction (for other kernels the overlap may 
even be larger). Pre-integrated rendering [EE02, 
EKE01, RGW+03] or the on-the-fly calculation of 
gradients require the overlap to be increased by 
another voxel in every direction. For bricks of b3 
voxels and an overlap of n voxels, the memory 
overhead is approximately (3n/b)·100%. 

The bricks are loaded into the video memory as 3D 
textures. Many graphics cards require 3D texture 
sizes to be a power of 2 in every direction. If the 
volume dimensions do not divide evenly into brick 
dimensions, either an additional layer of partially 
empty bricks should be added in each direction, or 
smaller rest-bricks should be used. 

When the amount of data in the textures exceeds the 
available texture memory, textures are swapped 
between the main memory and the texture memory. If 
a requested brick is not resident in the texture 
memory, it is loaded from the main memory, 
replacing resident textures [SWND03]. In most 
OpenGL implementations resident textures are 
swapped out on a Least Recently Used (LRU) base. 

Traditionally bricking in texture based rendering is 
used to be able to render data sets which exceed the 
size of the texture memory of the graphics hardware. 
The bricks are then chosen to be as large as possible, 
and they are sequentially loaded from the main 
memory into the texture memory. Which implies that 
for each frame the entire volume data is transferred 
over the bus. 

In our approach, however, we choose brick sizes 
which are considerably smaller. The smaller the brick 
size is, the bigger is the chance of bricks being 
completely void after applying the transfer function, 
and void bricks do not need to be drawn. Therefore, 
once they are swapped out of the texture memory, 
they are never reloaded into the texture memory, and 
thus the bus bottleneck is alleviated. 

We even apply bricking to volumes which completely 
fit into the texture memory to improve data locality, 
which will result in less cache trashing on the 
graphics card [HG97, CBS98, IEP98]. On the other 
hand smaller bricks could introduce a larger overhead 
due to the overlap needed for interpolation. Thus the 
optimal brick size needs to be defined depending on 
the available texture memory, optimal texture size 
(see section 3), nature of the data set, overhead due to 
overlap, and the constraints posed by the graphics 
hardware. 

6. EARLY RAY TERMINATION 
To be able to perform early ray termination at all, the 
volume has to be traversed in a front-to-back order. 
This can be done by evaluating the volume rendering 
integral in discrete steps, using the under operator: 

Ci+1 = (1 - Ai) · αi · ci + Ci 

Ai+1 = (1 - Ai) · αi  + Ai 

Whereby C, A denote the color, respectively the 
opacity value of the current ray, c, α the color and 
opacity value given by applying the transfer function 
to the current sample in the volume, and i denotes the 
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Figure 3: Test volumes: (a) 5123 volume, used for testing early ray termination, (b) vascular 5123 volume, 
(c) gigabyte volume of  642 · 642 · 1284 voxels, generated by duplicating a large 3D-RA volume. 



sample index. A ray is then saturated when Ai 
approximates 1. 

Before a brick is rendered, early ray termination is 
applied to its destination pixels. This is tested by 
executing a fragment shader program, while drawing 
a solid bounding box around the brick with back face 
culling switched on. The fragment shader program 
writes the maximal value in the depth buffer for 
saturated rays [KW03, RGW+03]. When slicing the 
brick texture the early z-test will prevent any 
fragment operations to be executed for those rays, 
reducing the load on the rasterization and fragment 
shader bottlenecks. Early ray termination is only 
performed once per brick, and not more often (e.g. 
for every octree node or every sample) because the 
overhead involved (changing fragment shaders, 
performing the test) would otherwise annihilate the 
benefits. 

7. OCTREE 
By not rendering the void bricks, the load on the 
rasterization bottleneck is already reduced. We seek 
to reduce it further by applying octrees. Every brick 
possesses its own octree. Every octree node 
corresponds to a cuboid part of the voxel volume, 
which can be divided into eight parts, corresponding 
to the child nodes (see figure 4). Our octree is kept in 
main memory. It only describes the geometry of the 
visible data. The actual voxel data is to be found in 
the brick textures. 
For tri-linear interpolation, let a cell be defined as a 
cube, whose eight corners adjacent voxel values are 
assigned. For every position within the cell an 
intensity value is defined as the tri-linear 
interpolation of the corner values. Therefore a cell 
can only be completely void if its eight corner values 
are completely transparent (α = 0) after applying the 
transfer function. This definition can easily be 
extended to any given interpolation kernel, by setting 
the size of a cell to (kernelsize - 1) 3. 
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Figure 4: An octree division and its tree. 
Every octree node carries a variable describing the 
ratio r of visible data to total data within its cube. At 
the final level of the octree, every node represents 
uniquely one cell, and is considered either completely 
filled (r = 1) or void (r = 0). Every higher octree level 

nodes ratio can be calculated by averaging the ratios 
of its children. This calculation only needs to be 
performed when the transfer function has changed. 
Rendering an image means that the bricks have to be 
processed in a front to back order. For each brick the 
respective octree is traversed, starting with its parent 
node. Depending on its ratio r there are three ways to 
process a node:  
r = 0: The node is completely void. It is not drawn at 
all, and is not traversed any further.  
0 < r < threshold: The nodes children will be 
traversed, and to each child node this strategy will be 
applied recursively. 
r ≥ threshold: The node is drawn completely. It is not 
traversed any further. 
If the threshold is set to 1, exactly all filled cells will 
be drawn, and no void cells. However, that would 
lead to a lot of tiny cubes at the boundaries of the 
visible data structures, and thus the load on the 
triangle throughput bottleneck becomes too high. 
Therefore the threshold should be chosen in such a 
way that some degree of void data is allowed to be 
drawn. A further strategy we use to prevent too much 
overhead is setting an octree level at which nodes, 
lower in the hierarchy, are not traversed any further. 
At this level, any node that is not void, will be drawn 
completely. 
When traversing a node, its children have to be sorted 
in a front to back order. Since there are eight 
children, it would seem that there are 8! = 40320 
ways to arrange the children. But since the 
arrangement along the three perpendicular axes is the 
same for all children, there remain 23 = 8 possible 
orders. When a node is to be drawn, the cuboid box 
corresponding to this node is sliced, and the slices are 
rasterized and blended into the previously drawn 
slices. The slices can be axis-aligned or viewport-
aligned. For the most straight-forward form of 
volume rendering, the brick texture is interpolated on 
every slice, taking its position in the brick into 
account, and after interpolation the transfer function 
is applied. However, it is also possible to perform 
more sophisticated forms of volume rendering on the 
slices, like pre-integrated volume rendering or 
include specular lighting [MGS02, RGW+03]. 
The octree is generated and traversed on the CPU. Its 
purpose is to lower the workload on the graphics 
pipeline, and thus the GPU. The octree reduces the 
time that the GPU spends on processing data which 
never contribute to the final image. The actual 
volume rendering algorithm, as well as interpolation, 
the post-interpolative transfer function, and 
optionally, specular lighting, is being performed by 
the GPU. 



8. RESULTS 
The described approaches have been tested with 
several different graphics cards: the nVidia 
QuadroFX 3400 (256MB on board memory), the ATi 
FireGL X1 (128MB), and the 3DLabsWildcat 7110 
(256MB). With each card the volume in figure 3b has 
been rendered, using the same lookup table settings. 
The volume data concerned the iliac vein, acquired 
through 3D rotational angiography. Since contrast 
media was injected into the vein, the vein could easily 
be classified using the transfer function. Only 3% of 
the voxels in this volume contain visible data. All 
results have been obtained, using a view port of 8002 
pixels and the sample rate for the volume rendering 
equation was set to 1.5 samples per voxel. 
Since the optimal brick size is mainly determined by 
the properties of the texture memory (see section 5) 
and the optimal octree limit is primarily used to 
balance the rasterization load and the triangle 
throughput (see sections 3 and 7) they can be 
considered to be fairly orthogonal variables. 
Therefore their optimum can be found by varying one 
variable, while keeping the other one constant. 
On each graphics card the test volume was rendered 
with different brick sizes, see figure 5, while the 
octree limit was set to 83 voxels.  
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Figure 5: Performance using different brick sizes. 

 

The ATi FireGL X1 and the 3DLabs Wildcat 7110 
clearly show that their optimal brick size is 
considerably smaller than their largest possible brick 
size. The nVidia QuadroFX 3400 does not benefit 
from the bricking for the 256MB test volume. 
However, also this card clearly profits from the 

bricking for the sparse 1GB volume in figure 3c: the 
optimal brick size is then 643 voxels, with an average 
frame rate of 37 fps, while for 2563 bricks only a 
mere 3.1 fps is reached. 
The performance of the ATi FireGL X1 depends 
heavily on the sampling direction of the bricks, 
because the ATi card treats the 3D textures as a stack 
of 2D slices. When the bricks are traversed in the x or 
y direction, the slices are accessed rather linear, and 
the performance is much better than when they are 
traversed in the z direction. It is inevitable to traverse 
in the z direction, when the viewing direction and the 
z-axis of the textures differ more than 45°. This effect 
can be reduced by alternating the orientation of the 
textures for each consecutive brick [WWE04]. 
Especially striking is the fact that the optimal brick 
size and octree limit is different for each sampling 
direction. When sampled in the xy-plane direction 
larger bricks benefit from linear traversal, while in 
other directions smaller bricks benefit from less cache 
trashing. In figures 5 and 6 this fact is illustrated by 
the performance measurement when sampling aligned 
to the xy-plane, and when not. 
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Figure 6: Performance using different octree 
limits. 

Further the volume was rendered with a fixed brick 
size of 643 voxels and variable octree limits (the 
octree limit is the smallest octree cube allowed). Not 
every octree branch reaches this limit, see section 7. 
Figure 6 unsurprisingly shows that there is an 
optimum octree size for every graphics card. Smaller 
octree limits lead to too much CPU overhead and 
triangle count, and larger octrees to too much 
rasterization overhead. The 643 octree level 

Graphics card (a) Optimized (b) Non-optimized (a) / (b) 

nVidia QuadroFX 3400 73.5 fps 9.6 fps 7.66 
ATi FireGL X1, xy aligned 83.3 fps 0.23 fps 362 
ATi FireGL X1, non xy aligned 27.4 fps 0.23 fps 119 
3Dlabs Wildcat 7110 21.3 fps 0.38 fps 56.1 

 

Table 1: Average frame rates reached when using (a) best combination of bricking and octrees, (b) GPU
rendering without bricking or octrees. 



corresponds to not using any octrees at all, only 
bricking. 
Table 1 shows the acceleration achieved, using the 
volume in figure 3b, with an optimal combination of 
brick size and octree depth for each particular 
graphics card versus the same GPU volume rendering 
routines applied without any bricking or octrees at 
all. Since early ray termination does not provide any 
performance gain for sparse data sets, it was not used 
on this volume. 
Early ray termination was tested on the QuadroFX 
3400 using the volume in figure 3a. GPU volume 
rendering without optimizations yielded 2.2 fps, using 
643 bricks and 83 octree limits 5.2 fps were reached, 
and with additionally early ray termination switched 
on, the average frame rate was 16.1 fps. 
Since the rendering primarily depends on the graphics 
card, replacing e.g. a Xeon 3.0GHz by a Xeon 
1.7GHz delivered approximately the same 
performance figures. The only part which is bounded 
by the CPU and main memory performance is 
building a new octree after the transfer function has 
been changed. For a volume consisting of 5123 voxels 
(16 bit per voxel, 256MB for the entire volume), 
rendered with a brick size of 643 voxels and an octree 
limit of 83 voxels, building all new octrees for the 
entire 5123 volume took 6.5 milliseconds on the Xeon 
1.7GHz and 3.5 milliseconds on the Xeon 3.0GHz 
machine. 

9. CONCLUSIONS 
In this paper, we presented an approach to accelerate 
GPU-based volume rendering. The approach 
consisted of a two staged space-skipping and early 
ray termination, and was tailored to lift the various 
bottlenecks encountered in the graphics pipeline. 
In the first stage, the entire volume is chopped into 
bricks, and from these bricks 3D textures are created. 
Empty bricks are never drawn, nor kept in the video 
memory, and therefore the bus bottleneck is relieved. 
The optimal brick size depends on the nature of the 
data (there should be a reasonable chance that there 
are bricks which are completely void), the available 
texture memory, the texture cache size and the 
overhead introduced by brick overlap. Since the brick 
textures’ content does not depend on the transfer 
function, they need to be created only once for static 
data. 
The octrees, which form the second stage, focus on 
skipping data that is not visible after applying the 
transfer function. In this way the rasterization 
bottleneck is addressed. To prevent too much 
overhead to be introduced, a certain amount of void 
data per octree box is allowed, and there is a limit to 
the granularity of the octree boxes. The optimal 

octree parameters are determined by the weight of the 
rasterization phase (i.e. are there complex fragment 
shader programs involved, etc.) and the trade-off 
between less rasterization operations and more 
triangles (triangle throughput bottleneck). Since the 
octree depends on the transfer function, it has to be 
recalculated when the transfer function changes. 
In this article it has been shown how the individual 
bottlenecks have been addressed by a two-folded 
approach. First the bus bottleneck and texture cache 
size has been addressed by bricking, and 
consequently the rasterization bottleneck has been 
addressed by the octrees. The rasterization and 
fragment shader bottleneck were further lifted by 
employing early ray termination. The results show 
that the parameters can be optimized for different 
graphics cards. Since the transfer function only leads 
to recalculating the octrees, and not reloading the 
bricks, it can also be changed quickly and 
interactively. 
The graphics industry are introducing more powerful 
hardware at an impressive pace. However 
developments in medical imaging modalities are 
equally impressive, resulting in larger volume data 
sets. Which means that in the foreseeable future the 
techniques that were presented here will preserve 
their benefits. 
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