
Optimizing GPU Volume Rendering

Daniel Ruijters
Philips Medical Systems

Veenpluis 6
 5680DA Best, the Netherlands

danny.ruijters@philips.com

Anna Vilanova
Technische Universiteit Eindhoven

Den Dolech 2
5600MB Eindhoven, the Netherlands

a.vilanova@tue.nl

ABSTRACT
Volume Rendering methods employing the GPU capabilities offer high performance on off-the-shelf hardware.
In this article, we discuss the various bottlenecks found in the graphics hardware when performing GPU-based
Volume Rendering. The specific properties of each bottleneck and the trade-offs between them are described.
Further we present a novel strategy to balance the load on the identified bottlenecks, without compromising the
image quality. Our strategy introduces a two-staged space-skipping, whereby the first stage applies bricking on a
semi-regular grid, and the second stage uses octrees to reach a finer granularity. Additionally we apply early ray
termination to the bricks. We demonstrate how the two stages address the individual bottlenecks, and how they
can be tuned for a specific hardware pipeline. The described method takes into account that the rendered volume
may exceed the available texture memory. Our approach further allows fast run-time changes of the transfer
function.

Keywords
Volume Visualization, Direct Volume Rendering, Texture Slicing, Hierarchical Rendering, GPU.

1. INTRODUCTION
New developments in medical imaging modalities,
numerical simulations, geological measurements, etc.
lead to ever increasing sizes in volumetric data. The
ability to visualize and manipulate the 3D data
interactively is of great importance in the analysis and
interpretation of the data. The interactive
visualization of such data is a challenge, since the
frame rate is heavily depending on the amount of data
to be visualized. Inherently, the demand for faster
visualization methods is always existing, in spite of
hardware innovations.

An established method for interactive volume
rendering on consumer hardware is GPU-based
texture slicing [Ake93, CCF94, CN93, EE02,
EKE01, MGS02, RGW+03, KW03]. Although this
approach performs very well compared to CPU-based
algorithms, since it benefits from the parallelism

available in the GPU pipeline, it can be accelerated
significantly by taking into account the various
bottlenecks that are encountered in the graphics
hardware. Every individual bottleneck has a different
optimal data chunk size and data throughput. In this
article, we present a novel approach to accelerate
GPU-based volume rendering that allows to tailor
and balance the load on the individual bottlenecks to
reach an optimal exploitation of the graphics
hardware power.

In section 2, we present an overview of related work.
Section 3 discusses the main bottlenecks that come
into play when performing GPU-based volume
rendering. Then an outline of the proposed approach
is drawn in section 4. Sections 5, 6 and 7 deal with
the details of our approach. In section 8, the results
are presented and discussed, and in section 9 we
summarize our conclusions.

2. RELATED WORK
The first rendering methods using the 3D texture
capabilities of the graphics hardware were proposed
by Cullip and Neumann [CN93], Akeley [Ake93] and
Cabral et al. [CCF94]. Essentially these techniques
consist of drawing polygons, which slice the volume
in a back to front order. The data set is mapped as
texture information on the polygons using tri-linear
interpolation. The successive polygons are blended
into the existing image.

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for
profit or commercial advantage and that copies bear this
notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

Journal of WSCG, ISSN 1213-6972, Vol.14, 2006
Plzen, Czech Republic.
Copyright UNION Agency – Science Press

Bricking is a technique to divide the volume data set
into chunks, called bricks [Eck98, WWE04]. It can
be employed to deal with data sets exceeding the
available texture memory. The bricks have then a size
that is equal to or smaller than the size of the texture
memory, and are loaded sequentially from main
memory into the texture memory while rendering.
However, this leads to significantly lower frame rates,
since the bus architecture, connecting the graphics
hardware to the main memory and CPU, proves to be
a major bottleneck. Tong et al. [TWTT99] propose a
bricking technique that allows skipping empty
regions. Their method, however, requires new
textures to be generated for every change of the
transfer function, which is time consuming for very
large data sets.

Texture compression can help to fit the entire volume
in the main memory, and to alleviate the bus
bottleneck. However, all presently available
compression methods supported by graphics
hardware (S3TC, FXT1, DXT1, VTC, etc) are
limited to lossy 8-bit RGB(α) compression, which
make them unsuitable for the compression of the
(often 12- or 16-bit) scalar values found in medical
data, and therefore we do not use them. Further,
Meissner et al. [MGS02] show that the lossy
compression algorithms severely reduce the image
quality. Wavelet compression, as proposed by Guthe
et al. [GWGS02] is a promising technique, but there,
not all parts of the volume are rendered at the highest
resolution.

Not rendering all parts of the volume in the highest
resolution possible is a way to reach higher frame
rates, as demonstrated by LaMar et al. [LHJ99],
Weiler et al. [WWH+00], Boada et al. [BNS01] and
Guthe et al. [GWGS02]. This is particularly suited to
increase the render speed for perspective projections
in a small view port, focusing on a detail of the
volume. However, orthogonal projections of the
entire volume in high resolution view ports, as is
common in medical applications, can only profit from
this technique at the cost of the image quality.

Space-skipping and space-leaping are techniques to
accelerate volume rendering, that origin from ray-
casting methods, see e.g. Levoy [Lev90], Zuiderveld
et al. [ZKV92] and Yagel and Shi [YS93]. It is based
on skipping empty parts of the volume. The idea of
space-skipping can be applied to texture-mapping
volume rendering as has been shown by Westermann
and Sevenich [WS01].

Octree is an established multi-level data structure
when dealing with voxel volumes, which has been
used in numerous different applications. E.g.
Srinivasan et al. [SFH97] apply an octree structure in
volume rendering. Orchard and Möller [OM01]

demonstrated the benefits of using adjacency
information in splatting volume rendering.

Parker et al. have combined bricking and multi-level
data structures to accelerate CPU-based iso-surface
ray-tracing of volume data sets on multi-processor
platforms and clusters [PSL+99, DPH+03]. Grimm et
al have applied a two-staged space skipping, based on
bricking and octrees, combined with gradient
caching, to CPU-based ray-casting [GBKG04].

Roettger et al. [RGW+03] describe a GPU-based pre-
integrated texture-slicing including advanced
lighting. The authors also describe a GPU-based ray-
tracing approach with early ray termination. Krüger
and Westermann [KW03] propose a method to
accelerate volume rendering based on early ray
termination and space-skipping in a GPU-based ray-
casting approach. The space-skipping addresses the
rasterization bottleneck, using a single octree level
only.

We have combined some of the techniques cited
above, to accelerate GPU volume rendering on a
single workstation, using off-the-shelf hardware.
Often we found that acceleration of volume rendering
has been treated as a singular problem to solve. We
rather focus on the individual bottlenecks that are
encountered while performing volume rendering, and
tailor the different techniques to address specifically
those bottlenecks.

3. BOTTLENECKS
Figure 1 illustrates the graphics pipeline, employed
for GPU-based volume rendering [Zel02]. Here we
discuss the most important points in the pipeline that
result in a bottleneck.

on - chip cache memory video memory

system
memory

frame buffer

commands

pre - TnL
cache

texture
cache

triangle
throughput

limited

fragment
shader
limited

CPU
limited

texture cache size
limited

frame buffer limited

rasterization
limited

bus
limited

CPU

textures

geometry

rasterization

vertex
shading

(T&L)

triangle setup

fragment
shading

and
raster

operations

post - TnL cache

Figure 1: The graphics hardware pipeline and its
bottlenecks [Zel02], light grey: memory units,
dark grey: data structures, blue: processing units,
red: bottlenecks.

The bus - The volume data has to be transferred
over the bus from the system memory into the

graphics card memory. Since this is the slowest part
of the entire pipeline, these transfers have to be as
few as possible.

Triangle throughput - The triangle throughput
is mainly limited by the vertex shading and triangle
setup phase. A straight forward implementation of
texture-mapping volume rendering would involve
only few triangles, but techniques for space-skipping
may increase the amount of triangles considerably. If
the triangle count becomes too high, this will become
a limiting factor for the frame rate.

Rasterization - When performing volume
rendering based on texture slicing, the vast majority
of the pixels on the screen are accessed multiple
times. Space-skipping techniques may be used to
reduce the amount of pixels to be accessed, but this
also increases the triangle count.

Texture cache size - Texture lookup is one of
the more time consuming operations performed
during the rasterization step. When the texture fits in
the cache, these lookup operations will be faster.

Fragment shader - Fragment shader programs
impact the duration of the rasterization step. Simple
fragment programs, such as applying a lookup table,
generally do not limit the frame rate, however more
complex operations, such as specular lighting
[MGS02, RGW+03], multi-dimensional transfer
functions [KKH01] or pre-integrated rendering
[EE02, EKE01, RGW+03], can form a bottleneck.
Especially fragment programs that perform multiple
texture lookups (e.g. on-the-fly gradient calculation
for specular lighting) are relatively slow.

4. OUR APPROACH
When performing volume rendering usually only a
fraction of all voxels actually contribute to the final
image, since a relatively small amount of voxels are
of interest and another amount of them are occluded.
In 3D medical data sets (obtained by e.g. ultrasound,
CT, MR or rotational angiography [KodBA98,

vdB03]) the anatomical structures of interest
encapsulated in the data sets occupy only a part of the
total data. Typically 5% to 40% of all voxels contain
visible data, and even highly filled CT or MR data
sets rarely exceed 55%. Especially vascular data sets
can be marked as sparse data sets, since vessels, due
to their tubular form, occupy only a small percentage
of the volume (1% to 8%).

In this article, we seek to reach the maximum benefit
in exploiting skipping void parts of the volume
(space-skipping). The novelty we introduce lies in
dividing the space-skipping in two stages; a course
division using bricking (figure 2a) and a finer one
using octrees (figure 2b). These steps are based on an
analysis of the bottlenecks encountered in the
graphics pipeline when performing texture-mapping
volume rendering. The first stage, bricking, is
chopping the volume in so called texture bricks. The
bricks are loaded into the video memory, to serve as
data for the volume rendering algorithm, which is
executed by the GPU. The bricks address the bus-
and texture cache size-bottleneck. To further alleviate
the load on the fragment shaders, we additionally
perform early ray termination to each brick. This
benefits especially highly-filled data sets. The second
stage is employing an octree within each brick. The
octrees address the rasterization bottleneck. As we
demonstrate, the two stages have to be balanced,
because lifting one bottleneck may overload another
bottleneck (e.g. rasterization bottleneck versus
triangle throughput bottleneck).

The role of the transfer function in volume rendering
is to map the scalar voxel information to optical
properties (e.g. color and opacity) [KKH01]. The
above described approach is implemented such that
the flexibility to change the transfer function at run-
time is preserved. This offers the possibility to focus
on different scalar ranges in the volume, without
lengthy calculations. To accomplish this, the
unmodified scalar voxel values are stored in the brick
textures, and a fragment shader program is used, to
lookup the RGBα values post-interpolatively.

(a)

(b)

(c)

Figure 2: The same volume fragment, rendered with (a) bricking cubes visible, (b) octree cubes visible
(note the various cube sizes) and (c) both bricking and octree cubes visible

5. BRICKING
As mentioned in section 2, the voxel volume can be
divided into chunks, called bricks, in order to cope
with voxel data sets sizes exceeding the size of the
texture memory of the graphics hardware. Note that
our bricks contain the original scalar values of the
voxel volume, thus the values before applying the
transfer function. This enables us to change the
transfer function on the fly, since a transfer function
change does not require creating new textures.

To obtain a correct interpolation at the bricks'
boundaries it is necessary that the data held by
adjacent bricks overlap. The overlap depends on the
convolution kernel used for interpolation [ML94],
and should correspond to (kernelsize - 1). For nearest
neighbor interpolation that means that no overlap is
needed, since the width of the kernel is one. For tri-
linear interpolation the overlap should be one voxel
in every direction (for other kernels the overlap may
even be larger). Pre-integrated rendering [EE02,
EKE01, RGW+03] or the on-the-fly calculation of
gradients require the overlap to be increased by
another voxel in every direction. For bricks of b3
voxels and an overlap of n voxels, the memory
overhead is approximately (3n/b)·100%.

The bricks are loaded into the video memory as 3D
textures. Many graphics cards require 3D texture
sizes to be a power of 2 in every direction. If the
volume dimensions do not divide evenly into brick
dimensions, either an additional layer of partially
empty bricks should be added in each direction, or
smaller rest-bricks should be used.

When the amount of data in the textures exceeds the
available texture memory, textures are swapped
between the main memory and the texture memory. If
a requested brick is not resident in the texture
memory, it is loaded from the main memory,
replacing resident textures [SWND03]. In most
OpenGL implementations resident textures are
swapped out on a Least Recently Used (LRU) base.

Traditionally bricking in texture based rendering is
used to be able to render data sets which exceed the
size of the texture memory of the graphics hardware.
The bricks are then chosen to be as large as possible,
and they are sequentially loaded from the main
memory into the texture memory. Which implies that
for each frame the entire volume data is transferred
over the bus.

In our approach, however, we choose brick sizes
which are considerably smaller. The smaller the brick
size is, the bigger is the chance of bricks being
completely void after applying the transfer function,
and void bricks do not need to be drawn. Therefore,
once they are swapped out of the texture memory,
they are never reloaded into the texture memory, and
thus the bus bottleneck is alleviated.

We even apply bricking to volumes which completely
fit into the texture memory to improve data locality,
which will result in less cache trashing on the
graphics card [HG97, CBS98, IEP98]. On the other
hand smaller bricks could introduce a larger overhead
due to the overlap needed for interpolation. Thus the
optimal brick size needs to be defined depending on
the available texture memory, optimal texture size
(see section 3), nature of the data set, overhead due to
overlap, and the constraints posed by the graphics
hardware.

6. EARLY RAY TERMINATION
To be able to perform early ray termination at all, the
volume has to be traversed in a front-to-back order.
This can be done by evaluating the volume rendering
integral in discrete steps, using the under operator:

Ci+1 = (1 - Ai) · αi · ci + Ci

Ai+1 = (1 - Ai) · αi + Ai

Whereby C, A denote the color, respectively the
opacity value of the current ray, c, α the color and
opacity value given by applying the transfer function
to the current sample in the volume, and i denotes the

(a)

(b)

(c)

Figure 3: Test volumes: (a) 5123 volume, used for testing early ray termination, (b) vascular 5123 volume,
(c) gigabyte volume of 642 · 642 · 1284 voxels, generated by duplicating a large 3D-RA volume.

sample index. A ray is then saturated when Ai
approximates 1.

Before a brick is rendered, early ray termination is
applied to its destination pixels. This is tested by
executing a fragment shader program, while drawing
a solid bounding box around the brick with back face
culling switched on. The fragment shader program
writes the maximal value in the depth buffer for
saturated rays [KW03, RGW+03]. When slicing the
brick texture the early z-test will prevent any
fragment operations to be executed for those rays,
reducing the load on the rasterization and fragment
shader bottlenecks. Early ray termination is only
performed once per brick, and not more often (e.g.
for every octree node or every sample) because the
overhead involved (changing fragment shaders,
performing the test) would otherwise annihilate the
benefits.

7. OCTREE
By not rendering the void bricks, the load on the
rasterization bottleneck is already reduced. We seek
to reduce it further by applying octrees. Every brick
possesses its own octree. Every octree node
corresponds to a cuboid part of the voxel volume,
which can be divided into eight parts, corresponding
to the child nodes (see figure 4). Our octree is kept in
main memory. It only describes the geometry of the
visible data. The actual voxel data is to be found in
the brick textures.
For tri-linear interpolation, let a cell be defined as a
cube, whose eight corners adjacent voxel values are
assigned. For every position within the cell an
intensity value is defined as the tri-linear
interpolation of the corner values. Therefore a cell
can only be completely void if its eight corner values
are completely transparent (α = 0) after applying the
transfer function. This definition can easily be
extended to any given interpolation kernel, by setting
the size of a cell to (kernelsize - 1) 3.

level 0

level 1

level 2

Figure 4: An octree division and its tree.
Every octree node carries a variable describing the
ratio r of visible data to total data within its cube. At
the final level of the octree, every node represents
uniquely one cell, and is considered either completely
filled (r = 1) or void (r = 0). Every higher octree level

nodes ratio can be calculated by averaging the ratios
of its children. This calculation only needs to be
performed when the transfer function has changed.
Rendering an image means that the bricks have to be
processed in a front to back order. For each brick the
respective octree is traversed, starting with its parent
node. Depending on its ratio r there are three ways to
process a node:
r = 0: The node is completely void. It is not drawn at
all, and is not traversed any further.
0 < r < threshold: The nodes children will be
traversed, and to each child node this strategy will be
applied recursively.
r ≥ threshold: The node is drawn completely. It is not
traversed any further.
If the threshold is set to 1, exactly all filled cells will
be drawn, and no void cells. However, that would
lead to a lot of tiny cubes at the boundaries of the
visible data structures, and thus the load on the
triangle throughput bottleneck becomes too high.
Therefore the threshold should be chosen in such a
way that some degree of void data is allowed to be
drawn. A further strategy we use to prevent too much
overhead is setting an octree level at which nodes,
lower in the hierarchy, are not traversed any further.
At this level, any node that is not void, will be drawn
completely.
When traversing a node, its children have to be sorted
in a front to back order. Since there are eight
children, it would seem that there are 8! = 40320
ways to arrange the children. But since the
arrangement along the three perpendicular axes is the
same for all children, there remain 23 = 8 possible
orders. When a node is to be drawn, the cuboid box
corresponding to this node is sliced, and the slices are
rasterized and blended into the previously drawn
slices. The slices can be axis-aligned or viewport-
aligned. For the most straight-forward form of
volume rendering, the brick texture is interpolated on
every slice, taking its position in the brick into
account, and after interpolation the transfer function
is applied. However, it is also possible to perform
more sophisticated forms of volume rendering on the
slices, like pre-integrated volume rendering or
include specular lighting [MGS02, RGW+03].
The octree is generated and traversed on the CPU. Its
purpose is to lower the workload on the graphics
pipeline, and thus the GPU. The octree reduces the
time that the GPU spends on processing data which
never contribute to the final image. The actual
volume rendering algorithm, as well as interpolation,
the post-interpolative transfer function, and
optionally, specular lighting, is being performed by
the GPU.

8. RESULTS
The described approaches have been tested with
several different graphics cards: the nVidia
QuadroFX 3400 (256MB on board memory), the ATi
FireGL X1 (128MB), and the 3DLabsWildcat 7110
(256MB). With each card the volume in figure 3b has
been rendered, using the same lookup table settings.
The volume data concerned the iliac vein, acquired
through 3D rotational angiography. Since contrast
media was injected into the vein, the vein could easily
be classified using the transfer function. Only 3% of
the voxels in this volume contain visible data. All
results have been obtained, using a view port of 8002
pixels and the sample rate for the volume rendering
equation was set to 1.5 samples per voxel.
Since the optimal brick size is mainly determined by
the properties of the texture memory (see section 5)
and the optimal octree limit is primarily used to
balance the rasterization load and the triangle
throughput (see sections 3 and 7) they can be
considered to be fairly orthogonal variables.
Therefore their optimum can be found by varying one
variable, while keeping the other one constant.
On each graphics card the test volume was rendered
with different brick sizes, see figure 5, while the
octree limit was set to 83 voxels.

0 20 40 60 80 100

Wildcat 7110

FireGL X1, non xy
aligned

FireGL X1, xy
aligned

QuadroFX 3400

16³
32³
64³
128³
256³
512³

fps

brick
sizes

Figure 5: Performance using different brick sizes.

The ATi FireGL X1 and the 3DLabs Wildcat 7110
clearly show that their optimal brick size is
considerably smaller than their largest possible brick
size. The nVidia QuadroFX 3400 does not benefit
from the bricking for the 256MB test volume.
However, also this card clearly profits from the

bricking for the sparse 1GB volume in figure 3c: the
optimal brick size is then 643 voxels, with an average
frame rate of 37 fps, while for 2563 bricks only a
mere 3.1 fps is reached.
The performance of the ATi FireGL X1 depends
heavily on the sampling direction of the bricks,
because the ATi card treats the 3D textures as a stack
of 2D slices. When the bricks are traversed in the x or
y direction, the slices are accessed rather linear, and
the performance is much better than when they are
traversed in the z direction. It is inevitable to traverse
in the z direction, when the viewing direction and the
z-axis of the textures differ more than 45°. This effect
can be reduced by alternating the orientation of the
textures for each consecutive brick [WWE04].
Especially striking is the fact that the optimal brick
size and octree limit is different for each sampling
direction. When sampled in the xy-plane direction
larger bricks benefit from linear traversal, while in
other directions smaller bricks benefit from less cache
trashing. In figures 5 and 6 this fact is illustrated by
the performance measurement when sampling aligned
to the xy-plane, and when not.

0 20 40 60 80

Wildcat 7110

FireGL X1, non xy
aligned

FireGL X1, xy
aligned

QuadroFX 3400

2³
4³
8³
16³
32³
64³

octree
limits

fps

Figure 6: Performance using different octree
limits.

Further the volume was rendered with a fixed brick
size of 643 voxels and variable octree limits (the
octree limit is the smallest octree cube allowed). Not
every octree branch reaches this limit, see section 7.
Figure 6 unsurprisingly shows that there is an
optimum octree size for every graphics card. Smaller
octree limits lead to too much CPU overhead and
triangle count, and larger octrees to too much
rasterization overhead. The 643 octree level

Graphics card (a) Optimized (b) Non-optimized (a) / (b)

nVidia QuadroFX 3400 73.5 fps 9.6 fps 7.66
ATi FireGL X1, xy aligned 83.3 fps 0.23 fps 362
ATi FireGL X1, non xy aligned 27.4 fps 0.23 fps 119
3Dlabs Wildcat 7110 21.3 fps 0.38 fps 56.1

Table 1: Average frame rates reached when using (a) best combination of bricking and octrees, (b) GPU
rendering without bricking or octrees.

corresponds to not using any octrees at all, only
bricking.
Table 1 shows the acceleration achieved, using the
volume in figure 3b, with an optimal combination of
brick size and octree depth for each particular
graphics card versus the same GPU volume rendering
routines applied without any bricking or octrees at
all. Since early ray termination does not provide any
performance gain for sparse data sets, it was not used
on this volume.
Early ray termination was tested on the QuadroFX
3400 using the volume in figure 3a. GPU volume
rendering without optimizations yielded 2.2 fps, using
643 bricks and 83 octree limits 5.2 fps were reached,
and with additionally early ray termination switched
on, the average frame rate was 16.1 fps.
Since the rendering primarily depends on the graphics
card, replacing e.g. a Xeon 3.0GHz by a Xeon
1.7GHz delivered approximately the same
performance figures. The only part which is bounded
by the CPU and main memory performance is
building a new octree after the transfer function has
been changed. For a volume consisting of 5123 voxels
(16 bit per voxel, 256MB for the entire volume),
rendered with a brick size of 643 voxels and an octree
limit of 83 voxels, building all new octrees for the
entire 5123 volume took 6.5 milliseconds on the Xeon
1.7GHz and 3.5 milliseconds on the Xeon 3.0GHz
machine.

9. CONCLUSIONS
In this paper, we presented an approach to accelerate
GPU-based volume rendering. The approach
consisted of a two staged space-skipping and early
ray termination, and was tailored to lift the various
bottlenecks encountered in the graphics pipeline.
In the first stage, the entire volume is chopped into
bricks, and from these bricks 3D textures are created.
Empty bricks are never drawn, nor kept in the video
memory, and therefore the bus bottleneck is relieved.
The optimal brick size depends on the nature of the
data (there should be a reasonable chance that there
are bricks which are completely void), the available
texture memory, the texture cache size and the
overhead introduced by brick overlap. Since the brick
textures’ content does not depend on the transfer
function, they need to be created only once for static
data.
The octrees, which form the second stage, focus on
skipping data that is not visible after applying the
transfer function. In this way the rasterization
bottleneck is addressed. To prevent too much
overhead to be introduced, a certain amount of void
data per octree box is allowed, and there is a limit to
the granularity of the octree boxes. The optimal

octree parameters are determined by the weight of the
rasterization phase (i.e. are there complex fragment
shader programs involved, etc.) and the trade-off
between less rasterization operations and more
triangles (triangle throughput bottleneck). Since the
octree depends on the transfer function, it has to be
recalculated when the transfer function changes.
In this article it has been shown how the individual
bottlenecks have been addressed by a two-folded
approach. First the bus bottleneck and texture cache
size has been addressed by bricking, and
consequently the rasterization bottleneck has been
addressed by the octrees. The rasterization and
fragment shader bottleneck were further lifted by
employing early ray termination. The results show
that the parameters can be optimized for different
graphics cards. Since the transfer function only leads
to recalculating the octrees, and not reloading the
bricks, it can also be changed quickly and
interactively.
The graphics industry are introducing more powerful
hardware at an impressive pace. However
developments in medical imaging modalities are
equally impressive, resulting in larger volume data
sets. Which means that in the foreseeable future the
techniques that were presented here will preserve
their benefits.

10. REFERENCES
[Ake93] K. Akeley. Reality Engine Graphics. In Proc.

SIGGRAPH'93, volume 27, pp. 109-116, 1993.
[BNS01] I. Boada, I. Navazo, and R. Scopigno.

Multiresolution Volume Visualization with a Texture-
based Octree. The Visual Computer, (17), pp. 185-197,
2001.

[CBS98] M. Cox, N. Bhandri, and M. Shantz. Multi-Level
Texture Caching for 3D Graphics Hardware. In ISCA
'98, pp. 86-97, 1998.

[CCF94] B. Cabral, N. Cam, and J. Foran. Accelerated
Volume Rendering and Tomographic Reconstruction
using Texture Mapping Hardware. Proc. of the 1994
symposium on Volume visualization, pp. 91-98, 1994.

[CN93] T. Cullip and U. Neumann. Accelerating Volume
Reconstruction with 3D Texture Hardware. Technical
Report TR93-027, 1993.

[DPH+03] D. E. DeMarle, S. Parker, M. Hartner,
C. Gribble, C. Hansen. Distributed Interactive Ray
Tracing for Large Volume Visualization. In Proc. 2003
IEEE Symposium on Parallel and Large-Data
Visualization and Graphics, pp. 87-94, 2003.

[Eck98] G. Eckel. OpenGL Volumizer Programmer's
Guide. Silicon Graphics, Inc, 1998.

[EE02] K. Engel and T. Ertl. Interactive High-Quality
Volume Rendering with Flexible Consumer Graphics
Hardware. In Eurographics '02 - State of the Art
Report, 2002.

[EKE01] K. Engel, M. Kraus, and T. Ertl. High-quality
Pre-integrated Volume Rendering using Hardware-
Accelerated Pixel Shading. Proc. of the 2001

Eurographics workshop on Graphics hardware,
pp. 9-16, 2001.

[GBKG04] S. Grimm, S. Bruckner, A. Kanitsar and
E. Gröller. Memory Efficient Acceleration Structures
and Techniques for CPU-based Volume Raycasting of
Large Data. IEEE Symposium on Volume
Visualization and Graphics, pp. 1-8, 2004.

[GWGS02] S. Guthe, M. Wand, J. Gonser, and
W. Strasser. Interactive Rendering of Large Volume
Data Sets. Proc. IEEE Visualization 2002, pp. 53-60,
2002.

[HG97] Z. S. Hakura and A. Gupta. The Design and
Analysis of a Cache Architecture for Texture Mapping.
In ISCA '97: Proc. of the 24th annual international
symposium on Computer architecture, pp. 108-120,
1997.

[IEP98] H. Igehy, M. Eldridge, and K. Proudfoot.
Prefetching in a Texture Cache Architecture. In Proc.
of the 1998 Eurographics Workshop on Graphics
Hardware, pp. 133-142, 1998.

[KKH01] J. Kniss, G. Kindlmann, and C. Hansen.
Interactive Volume Rendering using Multi-
Dimensional Transfer Functions and Direct
Manipulation Widgets. Proc. IEEE Visualization 2001,
pp. 255-262, 2001.

[KodBA98] R. Kemkers, J. op de Beek, and H. Aerts.
3D-Rotational Angiography: First Clinical
Applications. Proc. in Computer Assisted Radiology
and Surgery, pp. 182-187, 1998.

[KW03] J. Krüger and R. Westermann. Acceleration
Techniques for GPU-based Volume Rendering. In
Proc. IEEE Visualization 2003, pp. 287-292, 2003.

[Lev90] M. Levoy. Effcient Ray Tracing of Volume Data.
ACM Transactions on Graphics 9(3), pp. 245-261,
1990.

[LHJ99] E. LaMar, B. Hamann, and K. I. Joy.
Multiresolution Techniques for Interactive Texture-
Based Volume Visualization. In Proc. IEEE
Visualization '99, pp. 355-361, 1999.

[MGS02] M. Meissner, S. Guthe, and W. Strasser.
Interactive Lighting Models and Pre-Integration for
Volume Rendering on PC Graphics Accelerators. In
Graphics Interface 2002, pp. 209-218, 2002.

[ML94] S. R. Marschner and R. J. Lobb. An Evaluation of
Reconstruction Filters for Volume Rendering. Proc.
IEEE Visualization '94, pp. 100-107, 1994.

[OM01] J. Orchard and T. Möller. Accelerated Splatting
using a 3D Adjacency Data Structure. In Graphics
interface 2001, pp. 191-200, 2001.

[PSL+99] S. Parker, P. Shirley, Y. Livnat, C. Hansen,
P.-P. Sloan, M. Parker. Interacting with Gigabyte
Volume Datasets on the Origin 2000. The 41st Annual
Cray User's Group Conference , 1999.

[RGW+03] S. Roettger, S. Guthe, D. Weiskopf, T. Ertl,
and W. Strasser. Smart Hardware-Accelerated Volume
Rendering. In VisSym'03: Proc. of the symposium on
Data Visualisation 2003, pp. 231-238, 2003.

[SFH97] R. Srinivasan, S. Fang, and S. Huang. Rendering
by Template-based Octree Projection. Proc. of the 8th
Eurographics Workshop on Visualization in Scientific
Computing, pp. 155-163. Eurographics, 1997.

[SWND03] D. Shreiner, M. Woo, J. Neider, and T. Davis.
OpenGL Programming Guide: The Offcial Guide to
Learning OpenGL (red book). Addison-Wesley Pub
Co, 4 edition, 2003.

[TWTT99] X. Tong, W. Wang, W. Tsang, and Z. Tang.
Efficiently Rendering Large Volume Data Using
Texture Mapping Hardware. In Joint Eurographics -
IEEE TCVG Symposium on Visualization (VisSym),
pp. 121-132, 1999.

[vdB03] J. C. van den Berg. Three-Dimensional Rotational
Angiography. Endovascular Today, (March 2003),
2003.

[WS01] R. Westermann and B. Sevenich. Accelerated
Volume Ray-Casting using Texture Mapping. Proc.
IEEE Visualization 2001, pp. 271-278, 2001.

[WWH+00] M. Weiler, R. Westermann, C. Hansen,
K. Zimmerman, and T. Ertl. Level-Of-Detail Volume
Rendering via 3D Textures. In Proc. Volume
Visualization and Graphics Symposium 2000, pp. 7-13,
2000.

[WWE04] D. Weiskopf, M. Weiler, T. Ertl. Maintaining
Constant Frame Rates in 3D Texture-Based Volume
Rendering. Computer Graphics International 2004
(CGI'04), pp. 604-607, 2004.

[YS93] R. Yagel and Z. Shi. Accelerating Volume
Animation by Space-Leaping. Proc. IEEE
Visualization '93, pp. 62-69, 1993.

[Zel02] C. Zeller. Balancing the Graphics Pipeline for
Optimal Performance, Graphics Developer Conference
2002, http://developer.nvidia.com/, 2002.

[ZKV92] K. J. Zuiderveld, A. H. J. Koning, and
M. A. Viergever. Accelaration of Ray-Casting Using
3D Distance Transform. Proc. of Visualization in
Biomedical Computing II, pp. 324-335, 1992.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /ENU (Use these settings to create PDF documents with higher image resolution for high quality pre-press printing. The PDF documents can be opened with Acrobat and Reader 5.0 and later. These settings require font embedding.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
 /KOR <FEFFace0d488c9c8c7580020d504b9acd504b808c2a40020d488c9c8c7440020c5bbae300020c704d5740020ace0d574c0c1b3c4c7580020c774bbf8c9c0b97c0020c0acc6a9d558c5ec00200050004400460020bb38c11cb97c0020b9ccb4e4b824ba740020c7740020c124c815c7440020c0acc6a9d558c2edc2dcc624002e0020c7740020c124c815c7440020c0acc6a9d558c5ec0020b9ccb4e000200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e0020c7740020c124c815c7440020c801c6a9d558b824ba740020ae00af340020d3ecd5680020ae30b2a5c7440020c0acc6a9d574c57c0020d569b2c8b2e4002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe7f6e521b5efa76840020005000440046002065876863ff0c5c065305542b66f49ad8768456fe50cf52068fa87387ff0c4ee575284e8e9ad88d2891cf76845370524d6253537030028be5002000500044004600206587686353ef4ee54f7f752800200020004100630072006f00620061007400204e0e002000520065006100640065007200200035002e00300020548c66f49ad87248672c62535f0030028fd94e9b8bbe7f6e89816c425d4c51655b574f533002>
 /CHT <FEFF4f7f752890194e9b8a2d5b9a5efa7acb76840020005000440046002065874ef65305542b8f039ad876845f7150cf89e367905ea6ff0c9069752865bc9ad854c18cea76845370524d521753703002005000440046002065874ef653ef4ee54f7f75280020004100630072006f0062006100740020548c002000520065006100640065007200200035002e0030002053ca66f465b07248672c4f86958b555f300290194e9b8a2d5b9a89816c425d4c51655b57578b3002>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

