
Orphaned Linked List

An Object-Oriented approach to collapsing multiple
Progress Bars

Danny Ruijters

danny.ruijters@philips.com

Abstract. Everybody knows the frustration caused by a new progress
bar popping up, and starting from 0%, just after the previous one reached
100%. This annoyance is caused by several consecutive subroutines pro-
viding independent progress feedback. Collapsing these isolated instances
of progress bars to one bar running from 0 to 100% can be a nasty prob-
lem. In this article an object-oriented approach is presented, called “or-
phaned linked list”, providing an elegant and transparent solution to this
problem.

1 Introduction

In complex software packages, there are often multiple lengthy tasks that provide
progress feedback. A single user action could lead to a number of such tasks to be
executed, typically resulting in several consecutive instances of progress, running
from 0 to 100%. It is desirable to collapse the isolated instances of progress
feedback to one overall instance of feedback running from 0 to 100%, in order to
give the user a good notion how much of the overall task has been finished, and
how much is left.

It is possible to solve this problem by hard-coding the progress range into ev-
ery function, or by passing the current progress as parameters to each function.
However the first solution is not very flexible (consider calling the same subrou-
tines in a different order, or different context), and the latter poses constrains
to your code. Therefore this article presents a transparent and flexible solution
to the above described problem.

In this solution linked lists are used to connect the sequence of functions
providing progress feedback. Linked lists, also known as chained lists, are one of
the fundamental structures known to computer science for many years. However
we do not want to burden the functions that give progress feedback with the
control and overhead of subscribing to a linked list (after all then such a function
would have to have some knowledge about its context). Therefore a variation of
linked lists is introduced, dubbed “orphaned linked list”.

In section 2, a brief introduction to “traditional” linked lists is given. A
reader already familiar with linked lists might skip that part. All example code
in this paper is presented in C++ [4], but can be easily extended to any object-
oriented language. In section 3, the particularities of the orphaned linked list



are introduced. Section 4 explains how an orphaned linked list can be used to
collapse nested progress bars, and in section 5 we present our conclusions.

2 Linked list

Since linked lists are widely known and exhaustively described in literature,
this section will be limited to a very short summary of their most important
properties. An elaborate discussion of linked lists can be found in e.g. [2]. A
linked list consists of a sequence of items, called nodes. Every node possesses
data and a link to its successor, called the next pointer. For the last node the
next pointer typically refers to NULL. Such a list can be regarded as a chain of
nodes. Apart from the nodes there is a pointer, the head pointer, that refers to
the first node. The linked list described above is the simplest form of a linked
list, known as singly linked list. There are many optional variations possible, of
which the most important are:

doubly linked lists Besides the next pointer the nodes also posses a previous
pointer, pointing its the predecessor.

tail pointer Next to the head pointer, there is a tail pointer, referring to the
last node.

cyclic lists The tail node points to head node (and vice versa in case of a
doubly linked list).

pHead

Fig. 1. A singly linked list consisting of four nodes.

Linked lists are similar to one of the most commonly used structures in pro-
gramming: arrays. They both store a sequence of elements and both approaches
are independent of the specific type of elements. In arrays, in contrary to linked
lists, the chain of elements are sequentially stored in one continuous chunk of
memory. An in-depth comparison and discussion of the pros and cons of both
structures goes beyond the objectives of this paper, but summarizing it could
be stated that linked lists show better dynamical behaviour (adding, removing
and reordering elements) and arrays can be accessed faster (see [2]).

A straight forward object-oriented implementation of linked lists would know
two types of classes. The node class, encapsulating the element data, including
a next and optionally a previous pointer. And the list class, holding the head
and tail pointer and implementing the list control. This class would typically
offer functions for adding and removing elements, etc.



An example of an object-oriented approach can be found in the Standard
Template Library classes std::slist and std::list [3]. In these implemen-
tations the node class is embedded in the std::slist and std::list class
definition.

3 Orphaned linked list

An orphaned linked list knows only one type of class. This class encapsulates
the element data and a next and a previous pointer (it is also possible to use a
singly connected list, which consumes less memory, instead of a doubly connected
list). But additionally it has a static data member: the head pointer. Since static
data members in a class are shared between all instances of that class [4], there
is only one head pointer for all nodes. By default the head pointer will point
to NULL. When an instance of the class is created, first the constructor will be
called. In the constructor the particular instance will add itself to the linked list.
The insert algorithm, deciding where a particular will be inserted, can be chosen
randomly. The simplest strategy is to insert new nodes at the beginning of the
list, and that is what we will do in our examples. In that case the code for the
constructor could look as follows:

COrphanedNode::COrphanedNode() {
//Insert this node in the list
this->pNext = pHead;
this->pPrevious = NULL;
if (pHead) pHead->pPrevious = this;
pHead = this;

}

The destructor should unsubscribe to the list. The code might look like this:

COrphanedNode::~COrphanedNode() {
//Remove this node from the list
if (this->pPrevious) this->pPrevious->pNext = this->pNext;
if (this->pNext) this->pNext->pPrevious = this->pPrevious;
if (pHead == this) pHead = this->pNext;

}

It should be noted that this code only works correctly if all nodes are valid
members of the list at all times. If there are nodes with next or previous
pointers pointing to list members, but which are not member of that particular
list themselves, the code would break. Therefore the next or previous pointers
should be private members of the class, to prevent outside code from altering
them.

An orphaned linked list node class might have many public accessible func-
tions for various purposes, e.g. sorting the nodes or iterating over the nodes,
etc.



-*pHead : COrphanedNode

COrphanedNode

*

-pNext, pPrevious 2

Fig. 2. UML diagram of an orphaned linked list node.

What makes a orphaned linked list special? Why should you consider using
it? Its most important feature is the fact that the code that instantiates a node,
does not need to know where to find the parent of the linked list. As a matter of
fact, from the outside it might seem as if a simple instance of a particular class
is created, without any relationships with other entities. The actual context is
hidden, which might simplify code, and programming, as the following section
will demonstrate.

4 Collapsing multiple progress bars

Remark: where “progress bars” is written any form of progress feedback can be
used, e.g. textual feedback in percentages.

Consider a simple class for progress feedback, CProgress, which could be
used in the following way:

void A() {
CProgress myProgress;
myProgress.Set(0);
B(); //call function B
myProgress.Set(60);
C(); //call function C
myProgress.Set(100);

}

It is very simple to imagine how the code of CProgress could look like. The
Set() function simply sets the progress bar to the number that is passed. Now
suppose that function B() and C() have their own progress bars and suppose
that we want to capture that progress also in the progress bar of function A().
In other words, we want to collapse the progress feedback of function B() and
C() in the progress bar of function A().

Now it would be possible to pass the current progress as parameters to the
functions B() and C(), or a pointer to the current progress bar, but that would
make our functions very context aware, and is not a very flexible solution. To
solve this dilemma we extent the CProgress class to be an orphaned linked list
node. Further, one small adjustment to our code concerns replacing the Set()
member function with the SetRange() function. Rather than telling how much



percent of the progress already has been finished, this function indicates the
fraction of the total time the next block of code is expected to demand, as is
demonstrated in the following piece of code:

void A() {
CProgress myProgress;
myProgress.SetRange(0.60);
B(); //call function B
myProgress.SetRange(0.40);
C(); //call function C

}

In essence the SetRange() function still sets the displayed progress bar to
the progress that has been finished at that point. However, since a CProgress
instance is part of a list, it is aware of its context. It can lookup which progress
bars have preceded it, and what the range is it should be mapped to. For instance,
a progress bar in function C() can look up that it should be mapped from 60
to 100%. Figure 3 shows how a progress bar used in a certain function could
be collapsed in another one, which in its turn is part of yet another one. The
beauty of this approach lies in the fact that a function using a progress bar does
not need to know whether its caller already has a progress bar, or whether its
callees posses progress feedback. It does not need to be aware of its context, and
simply provides its own progress feedback, running from 0 to 100%.

Progress3

Progress1

Progress3

Progress2

rangedone

Progress2 Progress1

Fig. 3. Three progress bars are collapsed into each other. In black the progress that is
already finished, in grey the progress range for the current function. At the right the
linked list is shown.

Following the orphaned linked list approach, CProgress class registers itself
to the anonymous linked list in the constructor. The progress status of an em-
bedded progress bar at any given moment can be expressed by the following
recursive formulas:

Rn = rn ·Rn−1 n > 0
Pn = Pn−1 + pn ·Rn−1 n > 0 (1)

Whereby pn indicates the local progress, that has been finished, within the con-
text of subroutine n. The overall finished progress, of the complete tree of rou-
tines is indicated by capital P . The progress range of the next block of code



is denoted by r. The overall range R is the same range, but relative to all the
preceding stack of progress feedback. Obviously, for the top CProgress node R0

equals r0 and P0 equals p0.
The hierarchy of progress bars, collapsed in earlier ones, can be as deep and

complex as desirable. For instance three progress bars could be mapped to a
range within their predecessors, the deepest one could finish, another function
with a progress bar is created and maps to the next range, in its turn it maps
yet another progress bar to a range within its range, etc. etc.

Even though strictly speaking orphaned linked lists can be regarded as a
structural design pattern [1, 5, 6] (after all a linked list is clearly a data structure),
its use can, and will typically be, highly dynamic. As is illustrated for the example
of collapsing progress bars in figure 4, nodes are added and removed dynamically
during runtime. Only one branch of the tree in figure 4 can exist at any given
time, but following all branches that ever exist while executing a certain set of
functions could result in such a tree.

Fig. 4. Example of a tree representing the linked lists that could exist while a set of
functions are executed. Nodes are added when new functions are called and removed
once a function has finished.

5 Conclusions

In this article an object-oriented approach has been introduced, dubbed “or-
phaned linked list”, to solve the problem of collapsing multiple instances of
progress feedback.

The presented approach is transparent in the sense that a particular routine
does not need to know by which routine it was called (its caller), and whether
the subroutines it calls (its callees) present progress feedback. In other words it
does not need to be aware of its context. The approach is flexible in the sense
that the hierarchy of functions may be as deep and complex as necessary, and
may change every time a set of functions is called.

Orphaned linked lists can be used anywhere where traditional linked lists
are used. But their real strength lies in the fact that they can decouple the
instantiater of a node and the context of the linked list.



References

1. Gamma (Erich), Helm (Richard), Johson (Ralph) and Vlissides (John). – Design
Patterns Elements of reusable object-oriented software. – Addison-Wesley Publishing
Company, 1995.

2. Parlante (Nick). – Linked list basics. – http://cslibrary.stanford.edu/103/.
3. Plauger (P.J.), Stepanov (Alexander A.), Lee (Meng) and Musser (David R.). – The

C++ Standard Template Library. – Prentice Hall PTR, 2000, 1st edition.
4. Soustrup (Bjarne). – The C++ Programming Language. – Addison Wesley Long-

man, 1997, 3rd edition.
5. Shalloway (Alan) and Trott (James R.). – Design Patterns Explained: A New Per-

spective on Object-Oriented Design. – Addison-Wesley Publishing Company, 2001.
6. Tichy (Walter F.). – A catalogue of general-purpose design patterns. In : Proc.

Technology of Object-Oriented Languages and Systems (TOOLS 23), IEEE Com-
puter Society.


