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Abstract. Three-dimensional multimodality roadmapping is entering clinical routine

utilization for neuro-vascular treatment. Its purpose is to navigate intra-arterial and

intra-venous endovascular devices through complex vascular anatomy by fusing pre-

operative CT or MR with the live fluoroscopy image. The fused image presents the

real-time position of the intra-vascular devices together with the patient’s 3D vascular

morphology and its soft-tissue context. This paper investigates the effectiveness,

accuracy, robustness, and computation times of the described methods in order

to assess their suitability for the intended clinical purpose; accurate interventional

navigation. The mutual information based 3D-3D registration proved to be of sub-voxel

accuracy and yielded an average registration error of 0.515 mm and the live machine-

based 2D-3D registration delivered an average error of 0.2 mm. The capture range

of the image-based 3D-3D registration was investigated to characterize its robustness,

and yielded an extent of 35 mm and 25◦ for >80% of the datasets for registration of 3D

rotational angiography (3DRA) with CT, and 15 mm and 20◦ for >80% of the datasets

for registration of 3DRA with MR data. The image-based 3D-3D registration could

be computed within 8 seconds, while applying the machine-based 2D-3D registration

only took 1.5 microseconds, which make them very suitable for interventional use.



Validation of 3D Multimodality Roadmapping 2

1. Introduction

The fusion of pre-operative soft-tissue images, such as magnetic resonance (MR)

and computer tomography (CT) with intra-operative fluoroscopy images can aid

neurovascular treatment by providing detailed 3D information regarding the vascular

morphology and pathology. The fused image allows more accurate endovascular

guidance during procedures such as aneurysm coiling, stent deployment, and AVM

embolization (Bullitt et al. 1999). Another clear clinical benefit is the fact that the

amount of harmful iodine contrast medium can be reduced, since the vascular lumen

can be visualized based on the multimodal data without injecting additional contrast

agent. Therefore, the risk of contrast induced nephropathy can reduced considerably.

Especially for patients with severe kidney failure this is of eminent importance.

Though the fusion of 3D multimodal data with fluoroscopy images has been

investigated in a research setting for more than a decade, it is only now entering the

routine use in neuro-vascular treatment. The clinical adoption has been previously

hampered by insufficient accuracy and long computation times of the available

registration algorithms and hardware solutions. Especially during the live navigation

sufficient frame rates and low latencies are essential. The developments of powerful

hardware and registration algorithms that can harvest this power have helped to

overcome this hurdle. The common availability of 3D reconstruction in the cathlab

and the presence of commercial solutions for multimodal roadmapping are other reasons

that have enabled the adoption in clinical practise for patients with severe renal failure.

The routine application of this technique demands that the the accuracy, robustness,

computation times, and latencies of the applied techniques are investigated. The

described methods have been implemented from scratch and are commercially available

(XtraVision workstation, Philips Healthcare, Best, the Netherlands).

Registration is the process of spatially aligning two image datasets (which may

originate from different modalities), such that the corresponding morphology in both

datasets overlaps. Already in the 1980s registration methods using stereotactic frames

(see e.g., Peters et al. 1986) and other marker based systems were developed. In the

markerless domain two fundamentally different approaches can be distinguished when

projecting 3D volumetric data on 2D fluoroscopy images. In the first approach, called

image-based registration, the registration process is driven by the image content. There

are a numerous image-based 2D-3D registration algorithms known in the literature

for registering fluoroscopy images to either CT or MR images, e.g., (Weese et al.

1997, Kita et al. 1998, Bullitt et al. 1999, Penney et al. 2001, Byrne et al. 2004,

van de Kraats et al. 2005, Turgeon et al. 2005, McLaughlin et al. 2005, Tomaževič et al.

2006, Jomier et al. 2006, Groher et al. 2007, Bender et al. 2008). The image-based

algorithms typically take a considerable amount of time to compute, ranging from a few

seconds for methods that use a model of the anatomy of interest up to a few minutes for

some intensity driven approaches (McLaughlin et al. 2005). Since these algorithms use

the image content, sufficient landmark structures should be available in both images. In
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registration methods for angiographic applications the structures are usually provided by

filling the vasculature with harmful iodine contrast medium. Most registration methods

are based on a single projection, which leads to a rather large registration error for the

out-of-plane translation. As long as the projection angle does not change, this is not a

big hurdle as it only leads to a slight mismatch in the magnification factor between the

2D and the 3D image (Groher et al. 2007). When the C-arm is rotated, however, the

out-of-plane translation error leads to a large shift between the 2D and the 3D image.

This effect can be overcome by using two projection images at an angle of approximately

90 degrees (Jomier et al. 2006), but on a mono-plane X-Ray system this approach affects

the clinical work flow and also doubles the amount of contrast medium and radiation.

The second approach is known as machine-based registration. With the

introduction of motorized calibrated C-arm X-ray angiography, 3D reconstruction of

the vasculature came within reach. Since such 3D rotational angiography (3DRA)

datasets are obtained with the same apparatus as the 2D fluoroscopy data, it is possible

to calculate a registration, based on the geometry pose (viewing incidence angles,

source-detector distance, etc.), provided that there was no patient motion between

the acquisition of the 3DRA data and fluoroscopy data (Maintz and Viergever 1998,

Kerrien et al. 1998, Cañero et al. 2002, Söderman et al. 2005, Gorges et al. 2005). This

method also allows obtaining a registration, even when there are insufficient landmark

structures present in the images, e.g., due to the absence of iodine contrast medium

in the fluoroscopy images (Baert et al. 2004). A further advantage of machine-based

registration is the fact that it can be computed in real-time.

A method for determining the C-arm viewing incidence based on tracking a fiducial

was proposed by Jain et al. (2005), who reported a mean accuracy of 0.56 mm in

translation (standard deviation σ = 0.33 mm) and 0.33◦ in rotation (σ = 0.21◦), using a

fiducial of 3×3×5 cm. George et al. (2011) have reported a registration error of less than

2.4 mm for fiducial based registration of MRI with X-ray data. Here we present, however,

a method that does not rely on fiducials, but only uses the sensor and calibration

information concerning the geometry state provided by the C-arm system. By relying

on the sensor-based projection of a 3DRA reconstruction on the 2D fluoroscopy image,

the fusion of the multimodality data becomes a 3D-3D registration problem of intra- and

preoperative data (which usually computes more accurately and robustly than 2D-3D

registration). In earlier work we have described the fused visualization techniques in

detail (Ruijters et al. 2009). In this article we intend to focus on the accuracy, robustness

and computation speed aspects and their clinical implications.

2. Methods

2.1. Pre-interventional steps

Soft-tissue data, such as MR or CT, are often acquired for diagnostic purposes and/or

treatment planning prior to the interventional treatment of neuro-vascular pathologies.
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Our goal is to integrate these data into a fused visualization during the treatment.

In order to achieve this objective, a 3DRA dataset is obtained at the beginning of

the intervention. Before the 3DRA and soft-tissue data can be fused with the live

fluoroscopy image stream, a few pre-interventional steps have to be performed. In

the first step the 3DRA and soft-tissue dataset are registered, using an image-based

registration algorithm.

Since we focus on cerebral applications, and there are only limited local

deformations of the anatomical structures within the head, we can use a rigid registration

(i.e., only a global translation and rotation). Rigid registration further has the property

that it can be calculated relatively robustly and fast. Typically, a registration algorithm

consists of a similarity measure, indicating the quality of a given spatial mapping,

and an optimization algorithm, which searches the optimum of the similarity measure.

The search space consists of the multi-dimensional control variables of the spatial

mapping. We use Mutual Information as similarity measure (Maes et al. 1997), because

it performs very well on inter-modality registration and does not demand any a-priori

knowledge of the datasets. In order to further limit the calculation time, we employ the

Powell algorithm (Press et al. 1992) as optimizer, which is a so-called local optimizer.

Local optimization algorithms are generally faster than global optimizers, but they

do not guarantee that the overall optimum is found. To assure that the correct

optimum is found, the image-based registration is preceded by an optional rough manual

registration, which is to be performed by the clinician.

A multi-resolution approach is used to improve the capture range and the speed of

the algorithm. First the Powell optimizer is run with the 3DRA dataset downsampled to

643 voxels (Brigger et al. 1999). The multimodal dataset is downsampled such that the

voxel size in every direction matches the voxel size of the downsampled 3DRA data as

closely as possible. Consequently the optimizer is run with the 3DRA data downsampled

to 1283 voxels and a matching multimodal dataset. The multimodal data is resampled to

the grid of the 3DRA data using tri-linear interpolation during the registration process.

Similar to Stancanello et al. (2005), we use 256 grey level bins for the CT or MR

dataset. The spatial resolution of a 3DRA reconstructions may be very high (a voxel

can be as small as 0.1 mm), but they tend to have a rather poor signal-to-noise ratio

(SNR). To reduce the sensitivity to noise we use a limited number (64) of grey level bins

for the 3DRA dataset. As a result of the limited SNR, the vessels, bones and sinuses

are the only structures that are well delineated, and can serve as landmark structures.

The registration process is primarily determined by the facial structures, such as the

eye sockets, the nose, the sinuses, etc. It is therefore of importance that such structures

are contained both in the 3DRA dataset, as well as the soft-tissue dataset, see Fig. 1.

Also it is of importance that the spatial resolution of the soft-tissue dataset is sufficient.

Especially the distance between the axial slices is too high in many datasets. To obtain

registrations of sufficient accuracy, we requested it to be ≤ 2 mm.
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Figure 1. Left: A slice out of a 3DRA dataset, showing the limited dynamic range.

The visible anatomy are the sinuses, the skull, and a contrast medium filled aneurysm.

Middle: A CT dataset, containing the facial structures. Right: A CT dataset, missing

a major part of the facial structures, which hinders the registration process.
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Figure 2. The X-ray angiography C-arm system’s geometry, and its degrees of

freedom. Rx corresponds to the angulation of the C-arm, Ry to the rotation, Rz

is the L-arm rotation, f represents the focal spot, and c is the center of the detector.

2.2. Registering 2D fluoroscopy to 3DRA data

The machine-based registration involves projecting the 3DRA data on the fluoroscopy

images, based on the pose of the C-arm geometry. The X-ray C-arm system can rotate

over three axes (see Fig. 2): rotation around the L-arm, rotation of the C-arm, and

angulation of the C-arm. The 3DRA dataset has to be rotated to match the orientation

of the C-arm system; Let the origin of the coordinate system of the 3DRA data be

positioned at the center of the dataset, and let the x-axis correspond to the short side

of the table, the y-axis to the long side of the table, and the z-axis point from the floor

to the ceiling. The rotation of the detector coordinate system, with respect to the table

can be expressed as:

M = Rx ·Ry ·Rz (1)

Note that the order of the matrix multiplications is given by the mechanics of the

C-arm system. The C-arm system’s iso-center serves as origin for the rotation matrices.
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Figure 3. The virtual projection of a 3DRA dataset on a fluoroscopy image.

The rotation of 3DRA volume to the detector coordinate system corresponds to the

inverse of matrix M , which is equal to its transposed matrix MT , since rotation matrices

are orthogonal. After rotating the 3DRA dataset into the appropriate orientation, the

origin is translated from the iso-center to the detector center c. There still remains

the task of projecting it with the proper perspective (see Fig. 3). The perspective

matrix only depends on the X-ray source-to-detector distance (SID). Using homogeneous

coordinates it can be expressed as:

P =


SID 0 0 0

0 SID 0 0

0 0 1 0

0 0 −1 SID

 (2)

The projection of 3DRA data on a fluoroscopy image by an ideal C-arm geometry

has been described by Kerrien et al. (1998). Their projection was divided into an

extrinsic part, which described the geometry rotations and translations, and an intrinsic

part describing the perspective projection by the X-ray source and detector. This

subdevision originates from calibration procedures for optical cameras. The rotation

axes of the real C-arm do not intersect and it suffers from systematic imperfections

and mechanical bending, which motivated Cañero et al. (2002) to introduce several

increasingly sophisticated schemes for calibration of the extrinsic parameters for non-

ideal geometries. Gorges et al. (2005, 2006) refined the calibration procedure further

by taking also the influence of the non-ideal geometry on the intrinsic parameters into

account.

Our method resembles the approach of Gorges et al., but does not make a

subdivision between extrinsic and intrinsic parameters. For optical cameras this split

makes sense, since the intrinsic parameters that describe the perspective projection are

determined by the lens and the projection plane inside the camera housing, and therefore

the intrinsic parameters are completely independent from the extrinsic ones. For non-

ideal C-arm geometries this is not the case; the X-ray source and detector are mounted

at opposite sides of the C-arm and the mechanical bending of the C-arm (affecting
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Figure 4. A calibration image, showing the metal balls in the dodecahedron phantom.

The crosses on top of the balls identify the successfully recognized balls. As can be

seen from the image, ball number 15 and 19 were failed to identify properly (due to

overlap). The white circles represent the back-projected dodecahedron corners after

the dodecahedron was fitted to the image. The dodecahedron position in 3D space can

even be determined when a few balls are missed.

the intrinsic parameters) is dependent on its pose, which is described by the extrinsic

parameters.

Since the rotation axes of the real C-arm do not intersect, there is no true iso-

center. We define the point that has the smallest average distance to the rotation

axes as our iso-center, and let the calibration procedure correct for the mechanical

bending and the idealized model whereby the rotation axes intersect (as is assumed in

equation 1). Our calibration procedure is setup as follows: A dodecahedron phantom is

placed approximately in the iso-center of the C-arm system. The regular dodecahedron

has metal balls of fixed size at its corners. The metal balls are automatically detected

in an X-ray projection image (Fig. 4). Due to the shape of the dodecahedron and the

perspective in the projection image, there is only one pose that fits to the recognized

balls, and therefore the exact position of the X-ray source and detector with respect

to the dodecahedron can be determined by the direct linear transformation (DLT)

algorithm (Hartley and Zisserman 2000). For each calibration angle the position of

the X-ray source and detector are calculated from the sensor data that report the C-

arm orientation and translation using an ideal model. The deviation of the real X-ray

source and detector positions from their ideal counterparts is stored for every angle.

The calibration positions are distributed at regular intervals of 20 degrees in the range

of [-30, 40] for the angulation angle Rx, and [-100, 100] for the rotation angle Ry.

The calibration procedure determines the true projection parameters for a

number of projection angles evenly distributed over the hemisphere of possible C-

arm locations for a fixed L-arm location (Rz) (Rougée et al. 1993, Koppe et al. 1995).

Figure 5 illustrates the deviations of the focal spot position as a function of the

rotation and angulation angles of the C-arm geometry that were found by the
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Figure 5. The calibration procedure with the dodecahedron phantom provides the

real parameter values, which can be compared to the values provided by the geometry

sensors. This figure illustrates the drifting of the focal spot position (one of the

parameters) as a function of the C-arm rotation and angulation angles.

calibration of a particular C-arm system. For any position in-between the calibrated

positions, the deviations of the parameters are cubically averaged from the neighboring

calibration data. Because the same dodecahedron calibration is used during the 3DRA

reconstruction, the relation between the dodecahedron coordinate system and the 3DRA

voxel coordinate system is known. As a result, a projection image taken from any chosen

C-arm viewing incidence can be accurately mapped on the 3DRA dataset, using the

calibration data.

3. Experimental evaluation

3.1. 2D-3D registration accuracy

The registration error that is present in the fused image can be decomposed in a part that

can be contributed to the geometry-based 2D-3D registration, and a part that is caused

by the multimodality 3D-3D registration based on the mutual information criterion.

The geometry-based registration uses cubic interpolation for parameter positions that
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∆ rot [◦ ] ∆ ang [◦ ] ∆ L-arm [◦ ] ∆ detectorxy [mm]

max 0.1276 0.2223 0.2216 0.2653

average 0.0519 0.0776 0.0860 0.1023

stddev 0.0432 0.0880 0.0724 0.0788

∆ detectorz [mm] ∆ focxy [mm] ∆ focz [mm] SID [mm]

max 0.8623 0.5625 2.7779 1189

average 0.3656 0.1684 0.9629 1165

stddev 0.2815 0.1451 0.8007 16.36

Table 1. The deviations (∆) of the interpolated parameters versus the measured

parameters using the dodecahedron phantom were established for five recently

calibrated C-arm systems. This table reports the maximum, average and standard

deviation for the delta of the rotation, angulation, L-arm angle, detector center position

(in the xy-plane and the z-direction), and the focal spot position (in the xy-plane and

the z-direction). The last column reports the absolute source-to-detector distance.

are in-between the calibrated positions. In order to quantify the misalignment that

is associated with this method, we performed a full calibration of five C-arm X-ray

angiography systems (Philips Allura, Best, the Netherlands) and obtained additionally

images of the dodecahedron calibration phantom from nine viewing incidences in-

between the calibration positions. The interpolated parameter values were then

compared to the parameter values delivered by fitting the dodecahedron to the observed

images.

As can be seen in Table 1, the average deviation of the detector center amounts

about 0.1 mm in the xy-plane, the displacement of the focal spot in the xy-plane is about

0.17 mm and the average rotational error is less than 0.1◦. The average misalignment

of the detector center and the focal spot in the z-direction is a bit larger (0.37 mm and

0.96 mm respectively), but this contributes only to a slight error in the magnification

due to the perspective in the image, and when these errors are expressed as a percentage

of the SID (0.031% and 0.083% respectively) it becomes apparent that they are truly

negligible. Also it should be noted that these parameters are in the detector coordinate

system. This means that when the C-arm is rotated, the larger absolute deviation in

the z-direction is still perpendicular to the detector, and thus to the fluoroscopy image,

which does not lead to any significant errors in the alignment.

In order to assess to which extent certain sensor readings correspond to a

reproducible position of the C-arm predefined trajectories were repeated ten times while

imaging the calibration dodecahedron. 100 images were acquired for each trajectory.

The pose of the dodecahedron can be extracted from the resulting images by identifying

the metal balls, just as is done during the calibration procedure. Figure 6 shows the

results for a propeller trajectory (varying Ry while keeping all other parameters fixed) for

the calculated iso-center in x- and y-direction and the angulation angle respectively. The
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Figure 6. Plots of the deviation of the calculated iso-center and angulation position

with respect to the sensor information, based on 10 dodecahedron scans of 100 images

each.

average standard deviations for the various trajectories are presented in Table 2. The

variation in the observed C-arm poses is very small (less than 0.1 mm and 0.01◦). Moving

the C-arm between the trajectories only impacts the results minimally, as can be seen

by comparing the results for Propeller1, Propeller2 and Propeller3 in Table 2. There

are several spikes in the graphs in Figure 6. However, these correspond exactly to those

images where the metal balls on the corners of the dodecahedron overlapped, which lead

to miscalculations of the C-arm position. The deviation from the sensor information can

amount to multiple millimeters, but proves to be very consistent and reproducible. Our

results correspond well to those reported by Fahrig and Holdsworth (2000) for image-

intensifier based C-arm systems. Analogues to the advice of Fahrig and Holdsworth,

the clinical systems are recalibrated every six months.

3.2. 3D-3D registration accuracy

To evaluate the registration misalignment due to the mutual information based

registration, we performed a 3DRA reconstruction and a cone-beam CT reconstruction

using a soft-tissue protocol of a head phantom on the same C-arm system (Fig. 7).
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Roll Propeller1 Propeller2 Propeller3

iso-x [mm] 0.019 0.010 0.014 0.013

iso-y [mm] 0.024 0.0080 0.0092 0.0093

iso-z [mm] 0.079 0.058 0.070 0.077

rot [◦ ] 0.028 0.054 0.025 0.045

ang [◦ ] 0.0064 0.0048 0.0050 0.0053

larm [◦ ] 0.0074 0.0058 0.0058 0.0062

Table 2. Standard deviation of the C-arm position parameters, based on 10

dodecahedron scans of 100 images each, averaged over all images. For the roll trajectory

only the Rx angle is varied, whereas for the propeller trajectories only Ry is varied.

The Propeller1 trajectory was obtained with the detector in portrait mode and without

C-arm motion between scans, the Propeller2 trajectory was in portrait mode with C-

arm motion between the scans, and Propeller3 was in landscape mode with C-arm

motion between the scans.

(a) (b) (c)

Figure 7. (a) The head phantom being scanned by a C-arm X-ray system. (b) A slice

from the 3DRA reconstruction of the head phantom. (c) A slice from the cone-beam

CT reconstruction of the head phantom.

The soft-tissue protocol records six times more images (620 images versus 100 images

for 3DRA) and performs extra corrections to reduce the influence of scatter and to

improve the contrast resolution (Noordhoek et al. 2006, Kalender and Kyriakou 2007),

in order to deliver images that resemble multi-slice CT data. Because the datasets were

obtained with the same equipment, the gold standard transformation matrix is known.

The measurements were obtained from 295 registrations, initialized with random rigid

transformation matrices (mean initial translation was 58.27 mm, σ = 38.47,min =

5.20,max = 124.18, mean initial rotation was 57.81◦, σ = 29.27,min = 5.19,max =

89.13). The registration algorithm yielded on average an absolute residual translation

error of 0.515 mm (σ = 0.017,min = 0.495,max = 0.588) and a mean absolute residual

rotation error of 0.241◦ (σ = 0.031,min = 0.180,max = 0.307). The voxel size of the

cone-beam CT dataset was 0.5 mm3 and for the 3DRA it was 1 mm3, which means that

the registration algorithm delivered sub-voxel accuracy.
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The registration misalignment was further investigated using real clinical data.

Since a ground truth transformation is not available for such data, we used the approach

proposed by Woods et al. (1998). Hereby, three datasets {A,B,C} are available per

patient that are all rigidly registered to each other. Ideally, multiplying the resulting

registration matrices should deliver the identity matrix: MAB · MBC · MCA = I. The

discrepancies of the product from the identity matrix can be used as an indication

of the accuracy of the registration approach, though it can not be pinpointed to

any individual registration. We applied this method to five patients with one 3DRA

reconstruction and two MR datasets each, whereby the registration was initialized by

using the orientation information in the DICOM header and putting the origin in the

center of the datasets. This delivered an average absolute translational discrepancy

of 1.54 mm (σ = 0.30,min = 1.21,max = 2.00), and an average absolute rotational

discrepancy of 0.68◦ (σ = 0.26,min = 0.30,max = 0.94). The isotropic voxel size for

the 3DRA datasets varied from 0.35 mm to 0.48 mm. The pixel size of the MR slices

varied from 0.42 mm to 0.76 mm, and the slice distance varied from 1.0 mm to 2.0 mm.

Overall, it has been observed that the discrepancies in the product matrix are equal or

less than the slice distance of the MR datasets.

3.3. Capture range

In order to validate the robustness and applicability of our multimodality registration

approach in the clinical practice, we investigated the capture range of the mutual

information based automatic registration algorithm, using clinical data. In this context

we defined the capture range as the extent of the parameter search space that can serve

as start position for the optimizer, and still evolves to a correct spatial transformation

between the datasets. If this extent is too small, the manual pre-registration becomes

too cumbersome and time-consuming to be performed during an intervention.

To establish the range of the search space where the algorithm behaves robustly, we

made the following assumption: if a registration process, started from a translation in a

certain direction, evolves to the gold standard transformation, each registration attempt

from a smaller translation in the same direction is also assumed to lead to the gold

standard transformation, i.e. the capture range is convex without any holes. Though

this assumption is a simplification of the real capture range, it allows to investigate

the capture range within reasonable time. Also it has been observed that non-convexity

mainly manifests itself at the borders of the capture range. As a result the non-convexity

errors average out when a large number of measurements are taken.

Based on this assumption, the robust translation extent was determined, using an

approach, similar to a binary search (Knuth 1997); A gold standard transformation

established by an expert was applied to the datasets, and one dataset was translated

in a certain direction d⃗. If performing the registration process indeed leads to the gold

standard transformation, the process was repeated with the translation vector doubled.

If not, the translation vector was halved. A registration attempt was considered to be
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Figure 8. The absolute translational and rotational difference between a registration

result and the gold standard transformation is investigated for a 3DRA-MR dataset

pair. The bars in the chart show the amount of registration attempts that delivered a

delta within the interval given below the bar. Note that the intervals at the left side

of the graphs are smaller.
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Figure 9. The translation of the datasets was tested in all 14 depicted directions.

successful when all the components of the rotation matrix found by the registration

differed less than a particular δR from the gold standard (we used δR = 0.05), and the

translation differed less than δT (we used δT = 1.0 mm). Hereby, we rely on the fact

that an erroneous registration typically leads to a matrix that significantly differs from

a successful registration, as is illustrated in Fig. 8. Erroneous registrations are caused

by the Powell optimization algorithm getting stuck in a local optimum. This usually

only happens when the search space parameters are not close to the global optimum.

The iterative search was continued until a bounding interval (b1, b2), with b1 < b2,

was found, whereby a translation of b1 still was within the capture extent, and b2 not.

Then, iteratively a new limit b = (b1 + b2)/2 was tested. If a registration started from a

translation with vector b · d⃗ evolved to the gold standard transformation, b was within

the capture range, and b1 was set to b for the next iteration. Otherwise b2 was set to

b. In this way the accuracy of the boundary of the capture range was doubled (the

uncertainty was halved) in every iteration. The search was pursued until the boundary

of the capture range was found with an accuracy of 5 mm. Using this method, the

robust translation range was determined for every patient in 14 distinct directions (see

Fig. 9). A similar scheme was used to determine the robust rotation extent around the

x-, y- and z-axes in both directions. The robust rotation range was determined with a

precision of 1◦.
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Figure 10. The percentage of 3DRA-CT dataset pairs that can be registered correctly,

for a given initial translation (left) or rotation (right). The upper line shows the results

if the two most difficult to register CT datasets, which provided only a limited field of

view, are not taken into account. The lower line indicates the results for all patients.

The capture range with respect to translation and rotation were determined for

dataset pairs obtained from 17 patients; 7 patients with a 3DRA-CT dataset pair, and

10 patients with a 3DRA - MR pair. 88% of the CT datasets can be registered correctly

when the registration process is started within 30 mm translation to the gold standard

transformation with the 3DRA dataset, see Fig. 10. 67% manage to robustly register

within 50 mm translation. 88% of the CT datasets still can be registered correctly to

the 3DRA dataset when the initial rotation is 20◦ with respect to the gold standard,

74% when the rotation is 30◦. The extent of the capture range amounted on average

63.12 mm (σ = 30.82,min = 5.96,max = 204.56) for the translational component,

and 40.08◦ (σ = 21.62,min = 13.78,max = 91.34) for the rotational component. The

results we obtained are comparable to the ones published by Stancanello et al. (2004).

The results for the ten 3DRA-MR dataset pairs are shown in Fig. 11. 80% of the

MR datasets can be registered successfully when the initial translation is within 15 mm

of the gold standard, and 84% yield correct results when the registration is started

within 20◦ rotation. The extent of the capture range amounted on average 26.65 mm

(σ = 13.96,min = 5.78,max = 90.16) for the translational component, and 33.51◦

(σ = 15.75,min = 6.71,max = 100.72) for the rotational component.

3.4. Computation times

The pre-interventional steps consist of the 3DRA acquisition, the 3D-3D multimodal

registration, and the segmentation and mesh extraction of the vessels in the 3DRA

dataset. The 3DRA acquisition and reconstruction take combined about 16 seconds.

The linearly interpolated resampling of the floating dataset in the mutual information

driven registration of the multimodality data and the 3DRA data is performed on the

graphics processing unit (GPU), and as a result the registration process can be executed

in less than 8 seconds (Teßmann et al. 2008, Shams and Barnes 2007).

The operations that have to be performed during the treatment are the 2D-3D
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Figure 11. The percentage of 3DRA-MR dataset pairs that can be registered correctly,

for a given initial translation (left) or rotation (middle). The boxplots show the

distribution of the capture range extents and their median.

machine-based registration and the fused visualization. The 2D-3D correspondence

between the 3DRA dataset and the fluoroscopy image can be calculated in a mere

1.5 microseconds, and thus can be done in real-time when the geometry sensor values

change. The fused visualization, consisting of a mesh extracted from a 2563 voxels

3DRA dataset, a volume rendered slab from a 2562 × 198 voxels CT data-set and the

fluoroscopy image stream, can be displayed at an average frame rate of 38 frames per

second (26 milliseconds per frame). All measurements were performed on a Intel Xeon

3.6 GHz machine with 2 GB of memory, and an nVidia QuadroFX 3400 graphics card

with 256 MB of memory.

4. Discussion

Being able to see the live fluoroscopy image within the context of the 3D vasculature and

soft-tissue information is of great clinical relevance. The combination of the fluoroscopy

image with the 3DRA vessel tree adds value, since the guide wire and catheter position

can be located with respect to the vessel tree without additional contrast injection, while

the C-arm position and the X-ray source to detector distance can be altered freely. Even

during rotations of the C-arm, the machine-based 2D-3D registration will always be up

to date. The clinical interest of this so called 3D-roadmapping has been described

by Söderman et al. (2005). The additional visualization of the soft-tissue data, allows

correlating the position of the guide wire and catheter to anatomical information and

pathologies which are only visible in the soft-tissue data (see Fig. 12). The fact that

this information is available in real-time makes it especially suitable for navigation.

Phantom studies have shown that fused data can also increase the accuracy of vessel

diameter measurements (Boussion et al. 2004) and improve the visibility of microstents

(Richter et al. 2009).

Performing image registration of large 3D datasets during an interventional

treatment poses a number of additional constraints on the registration method.

Especially, the calculation times of the algorithms have to be limited, since they have to
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(a) (b)

Figure 12. (a) A quarter is cut out of a soft-tissue dataset, while the 3DRA vessels

are overlayed with the live fluoroscopy information, (b) a zoomed fragment of the left

image, showing the micro guide wire.

be carried out during the intervention. As we have shown in section 3.4, the computation

times of the described algorithms are very modest. The pre-interventional steps only

need a few seconds to compute, and the live roadmapping steps with a latency of less

than 30 milliseconds are considered to be real-time. Another aspect that is essential for

image-guided treatment is accuracy. The tests with the cone-beam CT data as well as

the real world MR data suggest that sub-voxel accuracy could be reached with the 3D-

3D registration. In our case the voxel size of 1 mm3 for the used 3DRA reconstruction

delivered an average residual registration error of 0.515 mm. The imprecision of the 2D-

3D registration proved to be less than 0.2 mm in our experiments. The final aspect that

was investigated in this study is the robustness of the image-based 3D-3D registration.

For interventional use it is important that the capture range of the registration algorithm

is large enough, because there is no time for an elaborate manual initialization (a rough

manual initialization is acceptable, though). The majority of the registration attempts

(>80%) with CT data succeed when the initial translation is less than 35 mm and the

rotation is less than 25◦, compared to a gold standard transformation. For the MR data

in our experiments the registration needed a finer initialization; 80% of the registration

attempts succeed when the initial translation is less than 15 mm and the rotation is less

than 20◦.

After the automatic registration process has finished, the clinical user is asked to

inspect the result and explicitly accept or reject it. In order to assess the proposed

registration result, fused tomographic representations of the datasets are shown to the

user, whereby the user can select the orientation (i.e., axial, lateral, caudal) and scroll

through the slices. By looking at the common features in the datasets it is possible

to establish even modest mismatches in the range of 1 to 5 mm. As is shown in

Fig. 8, it is usually not very difficult to identify an erroneous registration, since the
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Figure 13. The insertion of intra-vascular devices (i.e., the catheter) can cause the

vessels to deform, which can lead to a local mismatch between the 3D vessel lumen

(acquired before the devices were inserted) and the intra-vascular devices as can be

seen at the location of the arrows.

mismatch is typically very large. In case of a misregistration the user can perform a finer

manual initialization and restart the automatic registration process. Further possible

sources of registration mismatches between the 3D data and the live 2D fluoroscopy

images are patient motion and deformation of anatomical structure during the course

of the procedure (e.g., the deformation of vessels caused by the insertion of a catheter).

Patient motion will cause a global mismatch of the guide wire and the 3D vessel lumen,

whereas the deformation of vessels will lead to local mismatch (see Fig. 13). It is up

to the interventionalist to identify these issues, and take them into account. If the

mismatch becomes too large, a new 3DRA dataset can be acquired and registered to

the multimodal data.

The morphological MR or CT dataset holds the soft-tissue structures relevant to the

procedure as well as some pathological processes that may not be visible in the 3DRA

or fluoroscopy data. The addition of soft-tissue visualization to the 3D-roadmapping

technique brings extra information that may be important for the operator’s decision

making and increase safety during the procedure as well as shorten the operating time.

In embolizations of brain arteriovenous malformations (b-AVMs) or intracranial tumors

using liquid adhesives or particles, the exact position of the catheter tip is crucial. The

obvious goal is to embolize the pathological structures and avoid spilling over to normal

vessel supplying normal brain tissue. The complicated vessel anatomy can in these

situations be difficult to comprehend and the 3D multimodality roadmapping may in

such instances prove to be of great value. The technique may also be of assistance for

targeting areas of a b-AVM that are to be partially embolized thereby avoiding so-called

piece-meal embolization, as well as for avoiding high risk treatment close to eloquent

areas of the brain (Fig. 14). The exact position for delivery is also important for intra-

arterial delivery of other compounds i.e. cytostatic agents for tumors, growth factors for
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(a) (b)

(c) (d)

Figure 14. (a) An MR image, showing an AVM and impacted brain tissue, indicated

by the yellow arrows, (b) the live fluoroscopy image without contrast medium shows

the guide wire, but does not reveal its relation to the vasculature and the soft-tissue,

(c) the fluoroscopy image mixed with the vessel tree from the 3DRA dataset adds the

vascular context to the live data, (d) the fluoroscopy image, the 3DRA vasculature and

a slab from the MR data. The MR slab is positioned parallel to the view port at the

guide wire tip.

stroke and degenerative brain disorders, a field that at the moment is largely developing

and growing.

Clinical results have been described by Levitt et al. (2010). They successfully

combined pre-interventional CTA and MRA with real-time imaging at the time of

angiography, and reported that the technique can reduce radiation and iodinated

contrast exposure, and expands the application of angiographic technology in

cerebrovascular and other neurosurgical diseases. Clinically relevant potential to lower

contrast media use and a reduction of the risk of thrombo-embolic events is reported by
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Lin et al. (2010), when the multimodality roadmapping method is used for navigation

in areas ranging from the aortic arch level to the proximal internal carotid arteries.

Gupta and Radaelli (2009) have described how the presented method can also be applied

in transarterial chemoembolization (TACE). The fusion of the 3DRA with diagnostic

CT or MR angiography enables valuable multimodal visualizations of feeding vessels and

tumors. The 3D roadmapping, using the live 2D fluoroscopy, allows a smooth catheter

placement into the feeding vessels. Spelle et al. (2009) and Cooke et al. (2010) have

reported using the 3D multimodal fused roadmapping when navigating percutaneous

needle punctures to embolize a skull base glomus tumor and a intraorbital mass,

respectively.

5. Conclusions

The scope of this article concerned the validation of fusing real-time fluoroscopy, 3DRA

data and soft-tissue data into a combined image. The steps necessary to achieve this

data fusion have been described. To bring the pre-operative data in the coordinate

frame of the C-arm equipment, a fast automatic image-based registration of the 3DRA

dataset and the soft-tissue dataset has been developed. The machine-based registration

between the 2D fluoroscopy image and the 3DRA data only depends on the geometry

incidence angles, the X-ray source to detector distance and the calibration data. It can

be readily calculated in real-time.

In this paper we have addressed the accuracy, robustness and computation time

of the various aspects of the presented methods. The investigations of the precision

of the registration yielded an average residual error of 0.515 mm for the 3D-3D

registration and less than 0.2 mm for the live 2D-3D registration. The accuracy of

the composition of both steps is in the same range as image content based 2D-3D

registration algorithms (Bullitt et al. 1999, Byrne et al. 2004), but the computation of

the intra-procedural part is much faster. The robustness of the image-based 3D-3D

registration was examined for registration of 3DRA with CT data (capture range of

35 mm and 25◦ for >80% of the data), and 3DRA with MR data (capture range of

15 mm and 20◦ for >80% of the data). The speed of the algorithms is regarded as very

satisfactory for usage during clinical treatment.

Furthermore, the usage of the presented methods within neuro-endovascular

procedures has been briefly discussed. The combination of the fluoroscopic image with

the 3DRA vessel tree, known as 3D-roadmapping, offers the advantage that the spatial

relationship between the endovascular device and the surrounding vessel morphology

can be determined, without additional contrast injection, while the position of the C-

arm geometry can be altered freely. The strength of the described approach lies in

the possibility to correlate the position of endovascular devices and pre-interventional

soft-tissue image data accurately and in real-time. The clinical feedback has been

encouraging; the 3D roadmapping technique is considered a valuable method for

accurate navigation and helps to reduce X-ray dose and use of harmful iodine contrast
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agent (Söderman et al. 2005, Gupta and Radaelli 2009, Lin et al. 2010).

A possible disadvantage of the present method is the fact that patient motion

will render the 2D-3D registration to be invalid. Therefore future work could combine

machine-based registration with image-based registration to correct for patient motion.
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