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Purpose: Robust and accurate automated co-registration of the coronary arteries in 3D CTA and 

2D X-ray angiography during percutaneous coronary interventions (PCI), in order to present a 

fused visualization. 

Methods: A novel vesselness-based similarity measure was developed, that avoids an explicit 

segmentation of the X-ray image. A stochastic optimizer searches the optimal registration using 

the similarity measure. 

Results: Both simulated data and clinical data were used to investigate the accuracy and capture 

range of the proposed method. The experiments show that the proposed method outperforms the 

iterative closest point method in terms of accuracy (average residual error of 0.42 mm versus 1.44 

mm) and capture range (average 71.1 mm / 20.3° versus 14.1 mm / 5.2°). 
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Conclusion: The proposed method has proven to be accurate and the capture range is ample for 

usage in PCI. Especially the absence of an explicit segmentation of the interventionally acquired 

X-ray images considerably aids the robustness of the method. 

 

Percutaneous Coronary Interventions, Chronic Total Occlusions, X-ray 

fluoroscopy - CT image fusion, Registration 

 

Introduction 

Coronary artery disease (CAD) is one of the most common pathologies in the 

industrialized world. In catheter-based percutaneous coronary interventions (PCI) 

the impaired blood flow is restored by placing a stent in the narrowed vessel 

segment. The navigation of the catheter is especially challenging for chronic total 

occlusions, since the vessel tree distal to the occlusion is not visible in the X-ray 

images. A fused presentation of the X-ray image sequence and pre-processed 

computed tomographic angiography (CTA) data containing the occluded vessel 

segment, can be very useful during the guidance and treatment of the diseased 

vasculature. Furthermore such a fused visualization can also aid in increased 

accurate stent placement for any PCI, using pre-annotated CTA data, e.g. 

indicating plaque locations. 

Such a fused visualization requires the 2D X-ray data and the 3D CTA data to be 

co-registered. 2D-3D image registration has a number of clinical applications, 

such as radiotherapy planning and verification [1-4], surgery planning and 

guidance [4-7], and minimal invasive vascular treatment in coronary artery [8], 

peripheral [6, 9, 10] and neuro-interventions [11-14]. 

Most algorithms for 2D-3D image registration can be classified as either intensity-

based or feature-based. Intensity-based methods [4-6, 10, 12] directly use the 

pixel and voxel values to calculate a similarity measure, and require no or little 

segmentation. Feature-based methods [2, 7, 11, 13-16] are based on a 

segmentation of landmark features in the images. Once this segmentation has been 

obtained, the registration step can be performed quite fast. The segmentation, 

however, is not always trivial or robust, and erroneous segmentations can lead to 

erroneous registrations. 
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Due to their tubular structure, vessels occupy a relatively small fraction of the 

image, which especially poses a hurdle in intensity-based image registration. 

Therefore feature-based registration has received particular interest for vascular 

2D-3D registration. Many feature-based methods are based on the Iterative 

Closest Point (ICP) approach [17], which relies on minimizing the sum of 

minimal distances between the feature points in the reference and projected 

image. Fitzgibbon [18] has shown that the Distance Transform can be used in 

ICP-like registration, in order to improve its efficiency. This approach has been 

applied [13, 14] to register the neuro-vasculature by segmenting the vessel tree in 

the 2D and the 3D image. 

Methods and materials 

The objective of a 2D-3D registration algorithm is to find a spatial mapping 

between the 2D and the 3D image. Typically a registration algorithm consists of a 

similarity measure, indicating the quality of a given spatial mapping, and an 

optimization algorithm, which iteratively searches the optimum of the similarity 

measure. The search space consists of the multi-dimensional control variables of 

the spatial mapping. 

Projection 

A common part in 2D-3D registration algorithms is the projection of a point in 3D 

space on the X-ray detector plane. In our case the 3D coronary vessel tree is 

projected on the detector plane. In order to perform this projection, a 4x4 matrix 

M is defined, such that p = M ∙ v, whereby p and v are homogenous coordinates. 

Vector v is then a coordinate in the 3D CTA space, and vector p a coordinate on 

the detector grid (the z value of p is simply disregarded). 

Understanding the projection in mathematical detail is best accomplished by 

considering the components of the transformation chain separately. Matrix M can 

be decomposed into four matrices: M = P ∙ T ∙ R ∙ O, whereby P is the perspective 

transformation defined by the position of the focal spot (fx, fy, fz), the position of 

the center of the detector (cx, cy, cz), and the detector dimensions (dx, dy), as is 

illustrated in Figure 1. 
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Matrix T is the rigid registration matrix, containing a rotation and a translation, 

which is manipulated during the optimization process. It should be noted that we 

do not perform a calibration of the X-ray equipment to correct for deviations of 

parameters delivered by the system, since these deviations are found to be smaller 

than the deformations that occur due to the cardiac and respiratory motion. 

Furthermore we rely on the registration process to correct also for the system 

inaccuracies. 

Matrix R describes the viewing incidence of the X-ray C-arm geometry, and is 

determined by the L-arm (Rz), the propeller (Ry) and the roll rotation (Rx) of the C-

arm, and can be expressed as R = Rx ∙ Ry ∙ Rz, (Figure 2). Note that the order of the 

matrix multiplications is given by the mechanics of the C-arm system. 

Matrix O expresses the transformation from the frame of reference of the CTA 

dataset to the iso-centric X-ray coordinate frame. The rotational part of this matrix 

is extracted from the patient orientation information in the DICOM header of the 

CTA data. The translational part is established such that the center of the coronary 

vessel model in the CTA dataset corresponds to the iso-centric origin of the X-ray 

coordinate frame. 

Similarity measure 

In order to obtain a 3D model of the coronary vessels, they are segmented in the 

pre-operative 3D CTA datasets. There are good algorithms available for this task 

(e.g. [19]), and since it can be performed pre-operatively, it is not necessary to 

exclude manual interaction. A reliable and robust segmentation of the 2D X-ray 

angiography images can be more challenging, because of the projective nature of 

these images. Further, due to the intra-operative acquisition of the X-ray images, 

manual interaction or correction is not desirable. To overcome these limitations, 

we introduce a method which does not require an explicit segmentation of the 2D 

X-ray image. 

We perform a Distance Transform (DT) on the projected 3D model in each 

iteration of the optimization process. The fact that the DT is calculated in every 
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iteration differs from DT-based ICP, where the points of the 3D model are 

projected on a static DT of the segmented 2D image. The Distance Transform 

computes for each pixel position i the distance to the nearest feature point q in a 

set of feature points Ω, which is the set of projected 3D points in our case (Figure 

3a): 

||||min)( iqiDT
q




 

To achieve a rapidly declining distance weighting function D that yields only a 

high response close to the feature points, the squared DT is subtracted from a 

constant value c (Figure 3b): 

 2)(,0max)( iDTciD   

A vesselness filter is applied to the 2D X-ray image (Figure 4a). The vesselness V 

expresses the likelihood that a particular pixel can be contributed to a vessel 

structure (Figure 4b). As such it can be regarded as a fuzzy segmentation. We 

apply a multi-scale vesselness filter, as proposed by Frangi [20] (note, however, 

that our similarity measure is not restricted to this particular vesselness filter). 

Our similarity measure can then be expressed as the sum of the product of the 

distance weighting function D and the vesselness V over all pixels in the image: 
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Optimization strategy 

The search space, consisting of the multi-dimensional control variables of the 

spatial mapping, is determined by three degrees of translational and three degrees 

of rotational freedom (rigid registration). The process of projecting 3D data on a 

2D plane implies a considerable reduction of information. As a result there are 

many incorrect transformations that yield a relatively good similarity measure 

(e.g. projecting not corresponding vessel branches on each other), and form a 

local optimum in the search space. 

We have used two optimization strategies; A standard Powell optimizer was 

chosen [21]. This method searches the parameter space by performing a line 

search in every direction of an orthonormal basis in each iteration. The basis can 

be adapted between the iterations. 
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The other strategy is an especially for this purpose developed stochastic 

optimization approach. The advantage of this method is the fact that it is less 

likely to get stuck in a local optimum. It uses a population of samples in the 

search space. In every iteration of the optimization algorithm the n best samples 

are taken, and they each create m new samples. The m „children‟ of a sample are 

randomly generated according to a Gaussian normal distribution around the parent 

value for each variable in the parameter space. The standard deviation σ of the 

normal distributed random samples is multiplied with a reduction factor r for each 

iteration, since we assume that the global optimum is closer as we progress. 

The initial σ can differ for each dimension of the search space. In our case we use 

a significantly smaller σ for the three rotation variables than for the three 

translation variables, since we can already perform a quite good estimation of the 

rotation of the 3D model, based on the DICOM information of the CTA data, and 

the viewing incidence of the X-ray C-arm system. 

Results 

We evaluated the presented similarity measure with respect to accuracy and 

capture range, comparing it against ICP-based registration. For the optimization 

strategy, we compared the standard Powell optimizer against the stochastic 

optimization strategy described in the previous section. 

The accuracy and capture range was assessed, using simulated data. In order to 

perform this assessment, the coronary arteries were segmented from a real cardiac 

CTA data set, as well as the heart mask. From this CTA dataset a Digitally 

Reconstructed Radiograph (DRR) was constructed, which simulates an X-ray 

projection of the CTA data. In angiographic X-ray images the contrast medium is 

injected intra-vascularly, while the cardiac CTA images are obtained with 

intravenously administered contrast medium. To obtain a DRR from the CTA data 

that resembles an angiographic X-ray image, different X-ray attenuation 

coefficients assigned to the different segments, as is shown in Figure 5. The 

registration process is then started with a given offset translation and rotation. The 

advantage of the simulated data is the fact that the ground truth is known, and thus 

the error of the registration process can be quantified, see table 1. 

Using the simulated data, on average a capture range of 14.1 mm translation and 

5.2° rotation was established for the ICP-Powell combination, whereby the 
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capture range was defined as the set of initial translations and rotations with 

respect to the ground truth that still yielded a successful registration. The 

vesselness-Powell combination delivered a capture range of 43.8 mm and 22.1° 

respectively, and the vesselness-stochastic combination reached 71.1 mm and 

20.3°. The average calculation time for the ICP method was only 82 ms, while 

vesselness-Powell combination took 2.7 seconds and the vesselness-stochastic 

combination calculated for 11.0 seconds. In order to obtain these figures 563 

randomly initialized registrations were performed, 359 succeeded in finding the 

optimum within a margin of 3 mm and 3°, and 204 failed. 

We further investigated the capture range using clinical data from four pairs of 2D 

X-ray images and 3D coronary vessel trees, segmented from cardiac CTA data. It 

should be mentioned that it is impossible to define an objective ground truth for 

such real world data, especially since the cardiac phase might differ somewhat for 

the 2D and 3D images of the pair. Therefore we proceeded in the following way: 

A large number (about 30 per dataset pair) of registrations were started from 

different starting positions (translation and rotation). The resulting transformation 

was then labeled either as 'successful' or 'erroneous' by an expert. The largest 

successful registration in sense of translated distance and rotated angle was taken 

as a measure for the capture range, see table 2. 

The parameters of the stochastic optimizer during all measurements were set to 

perform 12 iterations with 25 samples each, whereby the 5 samples delivering the 

best results produced the `children‟ for the next iteration. The standard deviations 

σ of the normal distributed random samples were initialized on 12 mm for the 

translations and 4° for the rotations, and were multiplied with a reduction factor r 

= 0.8 between every iteration. 

Discussion 

The feature-based registration of a 3D vessel model, obtained from a CT, MR or 

3DRA dataset to vascular X-ray images in non-cardiac applications is usually 

being performed using digital subtraction angiography (DSA) X-ray, since the 

vessel tree can be easily segmented in such DSA images. For the coronary 

arteries, however, cardiac and respiratory motion render DSA to be unavailable. 

Using traditional feature-based registration on unsubtracted X-ray images requires 

the explicit binary segmentation of the vasculature in the X-ray data. This 
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segmentation proved to be the weakest link in the 2D-3D registration, causing the 

registration to fail in many cases. 

In the approach described in this article an explicit segmentation is avoided by 

directly using the vesselness image in our similarity measure. Furthermore, the 

squared distance transform guarantees that only vessel structures proximate to the 

projected centerlines contribute to the similarity measure, while it is wide enough 

to maintain a large capture range. We have demonstrated that the proposed 

vesselness-based similarity measure outperforms the Iterative Closest Point (ICP) 

method, both in sense of capture range and reliability. 

We have shown that the stochastic optimization approach enlarges the capture 

range, since it is not likely to get stuck in a local optimum far from the global 

optimum. Future work might include evaluating other stochastic global 

optimization strategies, as e.g. proposed by Kennedy and Eberhart [22]. 

Figure 6 shows an example of a fused visualization of the cardiac CTA data and 

the X-ray fluoroscopy image. Once the registration has been established, the X-

ray images can be fused with the CTA data in real-time. Since we performed the 

registration using a single static cardiac CTA phase, the coronary arteries in the 

X-ray sequence display a periodic motion around the coronary vessels, segmented 

from the CTA dataset. Though the ultimate goal would be to use 4D CTA data, 

while syncing the cardiac phases of the CTA and the X-ray data, the static 3D 

CTA already provides a good reference during the PCI treatment. The real-time 

X-ray image stream shows the advancement of the catheter, and the fused 

visualization aids in a more accurate placement of intra-vascular devices, such as 

stents. 

Conclusion 

When we started our search for a 2D-3D registration approach for the coronary 

arteries, we quickly abandoned intensity-based methods, because of their limited 

capture range for registration of vessel structures (intensity-based methods work 

best when there are large overlapping landmark areas, which is not a property of 

the vasculature). After initially disappointing results with feature-based 

registration, using a binary segmentation of the vessels in the 2D image, we 

developed a novel feature-driven 2D-3D registration method. This method is 

based on the iterative stochastic optimization of our similarity measure, which 
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relies on the 3D coronary vessel model, obtained from a cardiac CTA dataset, and 

a 2D X-ray image of the coronary arteries. The similarity measure is obtained by 

applying a vesselness filter to the 2D image, and then weighting it with a function 

based on the squared distance transform of the projected 3D vasculature. Our test 

results show that it performs very well for the task of 2D-3D registering of the 

coronary vessel tree. 

In future work we intend to accelerate the calculation of the distance transform, 

since it forms the main bottleneck. Possibly, the graphics processing unit (GPU) 

could be used for this task. The multi-scale vesselness filter, which is rather 

expensive to calculate, only needs to be obtained once for the entire registration 

process, and therefore does not pose a significant bottleneck. 
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Fig. 1. The projection of a point in 3D space on the detector grid is determined by the position f of 

the focal spot and the position and orientation of the detector. The center of the detector is 

indicated by c, the detector dimensions by dx and dy, v is an arbitrary point in 3D space, and p 

represents its projection on the detector.  

 

 

Fig. 2. The X-ray angiography C-arm system's geometry, and its degrees of freedom. The C-arm 

can be rotated around the x-axis by rolling in its sleeve (roll movement), around the y-axis 

(propeller movement) and z-axis (L-arm rotation).  
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                                    (a)                                                                      (b) 

Fig. 3. (a) Distance transform; The central axis of the segmented coronary vessels in the 3D CTA 

dataset is projected on the virtual detector plane. The distance transform of the projected points is 

depicted here, whereby lower intensities correspond to larger distances.  (b) In order to have a 

function that declines more rapidly, the distance transform is squared. 

 

  

                                    (a)                                                                      (b) 

Fig. 4. (a) X-ray image of the coronary arteries. Iodine contrast medium is injected in the vessels, 

which causes them to absorb more X-ray radiation than the surrounding tissues. (b) The vesselness 

transform of the X-ray image enhances the tubular structures, and suppresses the other image 

features.  
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                                    (a) 

  

                                    (b)                                                                      (c) 

Fig. 5. (a) Segmented cardiac CTA dataset. The gray tubular structures are the segmented coronary 

arteries. (b) A Digitally Reconstructed Radiograph (DRR) of the same dataset. Since the CTA is 

acquired with intravenously injected contrast agent, the cardiac atria and ventricles display more 

attenuation than in an X-ray angiogram. (c) A DRR, using different X-ray attenuation coefficients 

per segment, simulating X-ray angiography. 
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Fig. 6. A fused visualization of the coronary arteries, segment in a 3D CTA dataset (red), and 2D 

X-ray angiography image (gray). The combined visualization allows the correlation of the vessels 

in the CTA data (and pre-interventional annotations) and the peri-interventional X-ray by the 

observer. 

 

 

Table 1. Average residual error (x) and stand deviation (σ) of a successful registration, measured 

using simulated data. The same set of initial transformations was used for all methods. 

Similarity measure 

Optimizer 

ICP 

Powell 

Vesselness 

Powell 

Vesselness 

Stochastic 

Translation (mm) x = 1.44, σ = 1.50 x = 0.42, σ = 0.12 x = 0.54, σ = 0.47 

Rotation (degrees) x = 1.31°, σ = 1.00 x = 0.70°, σ = 0.77 x = 1.06°, σ = 1.00 

 

 

Table 2. The maximum capture range was established using clinical datasets. 

Sim. meas. 

Optimizer 

ICP 

Powell 

ICP 

Stochastic 

Vesselness 

Powell 

Vesselness 

Stochastic 

Pair 1 0.0 mm, 0.0° 7.8 mm, 8.72° 83.3 mm, 21.7° 76.9 mm, 40.3° 

Pair 2 21.8 mm, 17.5° 33.1 mm, 16.6° 68.7 mm, 31.9° 62.0 mm, 41.5° 

Pair 3 12.9 mm, 25.2° 11.2 mm, 14.5° 49.7 mm, 23.8° 60.8 mm, 37.3° 

Pair 4 12.1 mm, 11.0° 20.2 mm, 15.2° 30.8 mm, 30.3° 71.0 mm, 51.7° 

 


