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2École polytechnique fédérale de Lausanne, Switzerland

Email: danny.ruijters@philips.com, philippe.thevenaz@epfl.ch

Achieving accurate interpolation is an important requirement for many signal-
processing applications. While nearest-neighbor and linear interpolation methods
are popular due to their native GPU support, they unfortunately result in
severe undesirable artifacts. Better interpolation methods are known but lack
a native GPU support. Yet, a particularly attractive one is prefiltered cubic-
spline interpolation. The signal it reconstructs from discrete samples has a much
higher fidelity to the original data than what is achievable with nearest-neighbor
and linear interpolation. At the same time, its computational load is moderate,
provided a sequence of two operations is applied: first, prefilter the samples, and
then only reconstruct the signal with the help of a B-spline basis. It has already
been established in the literature that the reconstruction step can be implemented
efficiently on a GPU. This article focuses on an efficient GPU implementation of
the prefilter, on how to apply it to multidimensional samples (e.g., RGB color

images), and on its performance aspects.
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1. INTRODUCTION

Digital signals commonly consist of data samples on a
discrete uniform (regular) grid. This is not only the case
for images, but also for a broad range of other types of
signals (e.g., audio [1]). The dimensionality of the grid
typically depends on the type of the signal (e.g., 1-D:
audio, 2-D: still images, 3-D: video, volumetric data).
The samples themselves can also be multidimensional,
for instance when dealing with stereo audio or color
images.

In many applications, such as signal processing [2],
visualization [3, 4], image registration [5, 6], and
scientific simulations, it is necessary to access signal
values in-between the sample locations, which calls
for interpolation. This, in itself, is not a real hurdle
since any bandwidth limited signal can be reconstructed
perfectly by using the sinc function as reconstruction
basis. However, the slow decay of sinc makes this
approach utterly impractical. Instead, nearest-neighbor
and linear interpolation methods are favored because
they are computationally much less expensive, and they
are supported natively by the GPU.

Sigg and Hadwiger [7] have reported that using
a cubic B-spline as reconstruction basis can also
be performed very efficiently by the GPU. Their
method lacks some of the imperfections that are
associated with nearest-neighbor (block artifacts) and

linear interpolation (star-shaped artifacts), but also
introduces a smoothing or blurring of the signal. The
smoothing is caused by the fact that the cubic B-spline
basis is a nonnegative function. In addition to this
smoothing, a different issue arises because the cubic
B-spline is not itself interpolating, in the sense that
the sequence {. . . , 0, 0, 1

6 , 2
3 , 1

6 , 0, 0 . . .} resulting from
sampling a cubic B-spline at the integers differs from
the unit-sample sequence {. . . , 0, 0, 0, 1, 0, 0, 0, . . .}.
Therefore, when used to directly reconstruct a signal,
as was done in [7], the reconstructed function does
not necessarily pass through the original sample points.
This apparent drawback is shared by all B-splines of
second and higher degree. This is particularly of
importance when the filter is part of a processing chain.

An effective solution to the smoothing property
has been formulated by Thévenaz et al. [8], and
consists of applying the correct prefilter to the signal
samples. In this paper, we describe a GPU-accelerated
version of this prefilter, implementation considerations
are discussed, and the resulting performance is
evaluated. The acceleration is achieved by exploiting
the massive parallelism available in modern graphics
hardware [9]. The corresponding source code is
available for download [10].

This paper is organized as follows: Sections 2 and 3
provide the well-established theoretical background of
B-spline interpolation that is needed to understand
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FIGURE 1. The box function (the B-spline basis of
degree 0).

the GPU code. The implementation details and
considerations are described in Section 4. The resulting
performance and precision characteristics are discussed
in Section 5.

2. B-SPLINE FILTERING

Uniform spline-based interpolation was introduced by
Schoenberg [11] and has been described exhaustively
by Unser, Thévenaz et al. [8, 12]. The foundation for
B-spline functions of any nonnegative integer degree is
given by the B-spline basis of degree 0 (the box function,
see Figure 1) defined by

β0(x) =
1
2

(
sgn(x +

1
2
)− sgn(x− 1

2
)
)

. (1)

All other B-spline bases of higher integer degree n can
be obtained by the recursive continuous convolution
of the box function with the B-spline basis of degree
(n− 1):

βn(x) =
(
βn−1 ∗ β0

)
(x). (2)

Nearest-neighbor and linear interpolation, which are
popular because of their native GPU support, can be
regarded as B-spline filtering of the 0th and 1st degree,
respectively. It is straightforward to obtain explicit
expressions of B-splines of any degree from (1) and (2);
in particular, the cubic B-spline β3 of x ∈ R can be
written as

β3(x) =





0, 2 5 |x|
1
6 · (2− |x|)3, 1 5 |x|< 2
2
3 − 1

2 |x|2 · (2− |x|), |x|< 1.
(3)

Given an appropriate sequence of coefficients c has
been derived from the available sequence f of the
samples of a signal, its spline-based reconstruction at
a given position x can be written as

s(x) =
∑

k′∈Z
c[k′] βn(x− k′). (4)

In other words, the value s(x) reconstructed at a given
position x is the sum of integer-shifted and weighted
centered B-spline bases βn of degree n. The weights
are provided by the coefficients c which are located on a
uniform grid and reflect the contribution of the original
samples f . We illustrate this process in Figure 2 for the
cubic B-spline. Since B-splines have a finite support,
the number of coefficients c[k′] that play a role in the
interpolation at position x is finite too. It turns out
that, in the one-dimensional case, this number is one
more than the degree of the spline.

FIGURE 2. Cubic B-spline interpolation. The image
coefficients c are multiplied by the weights wn(ξ). The
weights are determined by the fractional amount ξ =
x − i of the present coordinate and by the B-spline basis
function β3. In this figure, the index i is the integer part of
the coordinate.

3. PREFILTER

A naive approach to reconstruct a continuous signal
with (4) would be to enforce that the reconstruction
coefficients c take the values of the original sequence f
of samples. The corresponding reconstructed function,
however, would not necessarily pass through the
samples. Rather, it would present a smoothened version
that would only approximate them, which is generally
not desirable. Fortunately, as shown in [8], this can
be overcome by assigning the appropriate prefiltered
version of the samples to c. The objective of the
prefilter is to obtain a sequence of coefficients that yield
a truly interpolating function s that passes through the
original samples f . Thus, the values for c[k] should be
collectively chosen such that the following equation is
fulfilled for all integers k ∈ Z:

f [k] = s(k) =
∑

k′∈Z
c[k′] βn(k − k′), (5)

This version of (4) has the general flavor of a
convolution, but is neither a discrete convolution nor
a continuous one because it mixes the discrete sequence
c[·] with the continuously defined function βn(·).
However, it must be realized that the argument of βn is
always discrete in the special case (5). Therefore, it is
useful to define the sampled version of the continuously
defined signal βn as the discrete sequence bn, with

∀k ∈ Z : bn[k] = βn(x)|x=k . (6)

Then only, we can safely rewrite (5) as the discrete
convolution

f [k] = (c ∗ bn) [k]. (7)

In the discrete Fourier space [13], with z = ei ω, this can
be written as

F (z) = C(z)Bn(z). (8)

This leads to the conclusion that c can be obtained by
a convolution of the sequence f of samples with the
inverse of the B-spline function, which can be expressed
in the discrete Fourier space as

c[k] =
(
f ∗ b−1

n

)
[k] z←→ C(z) = F (z)B−1

n (z). (9)
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The interpolated continuous signal s does not only
pass through the original discrete samples, but also
delivers a function that is maximally differentiable. It
is worth mentioning that this approach is equivalent to
sinc interpolation for the infinite-degree B-spline [12].
In the case of the 3rd degree (cubic) B-spline, B3 is
given by

B3(z) =
1
6

(
z−1 + 4 + z

)
, (10)

while its inverse is

B−1
3 (z) =

6
z−1 + 4 + z

=
λ

1− zp z−1

−zp

1− zp z
, (11)

with λ = 6 and zp =
√

3−2. The sequence f of samples
f [k] needs to be convolved with this inverse filter.

If you are familiar with the z-transform, the first term
λ/(1 − zp z−1) can be easily rewritten as a recursive
filter. The second term, however, seems to be more
cumbersome, since it contains an element z, which
is looking into the future. Luckily, we are dealing
with images—as opposed to time signals. Thus, the
whole sequence f is already known to us, and there is
no problem in traversing the data backwards starting
from the end. The filters (illustrated in Figure 3) can
therefore be implemented as

k ∈ {1, 2, . . . , N − 1} :
c+[k] = λ f [k] + zp c+[k − 1] (12)

and

k ∈ {N − 2, N − 3, . . . , 0} :
c−[k] = zp

(
c−[k + 1]− c+[k]

)
. (13)

CUDA texture lookups are clamped for non-
normalized texture coordinates, meaning that c[k] =
c[0] ∀ k < 0 and c[k] = c[N − 1] ∀ k ≥ N . We can
use these boundary conditions to determine the starting
coefficients c+[0] and c−[N − 1].

c+[0] = λ

(
f [0] +

1
1− z2 N

p

N−1∑

k=0

(
zk+1
p + z2 N−k

p

)
f [k]

)

c−[N − 1] = − zp

1− zp
c+[N − 1].

(14)

The initialization of the c+ series can be approxi-
mated by a summation with M terms.

c+[0] = λ

(
f [0] +

M−1∑

k=0

zk+1
p f [k]

)
. (15)

It turns out that M = 12 samples are sufficient to reach
the 24 bits of accuracy found in the mantissa of 32-bit
floating point numbers. However, when the length of

FIGURE 3. The causal and anti-causal filters can be
implemented as recursive filters. The top drawing represents
the causal filter and the bottom drawing is the anti-causal
filter, whereby l = N − 1− k.

a signal is smaller than M samples, it advisable to use
the exact initialization of c+[0]. Meanwhile, the initial
value of c−[N − 1] for the backward recursion is exact
and consistent with the clamping of the data at their
boundaries.

After both filters have been applied to the samples,
the cubic B-spline coefficients are available, with c[k] =
c−[k]. A careful analysis of (12) and (13) reveals that
the whole process can be realized in-place, if so desired.
This is the approach that we follow in Section 4.

4. CUDA IMPLEMENTATION

As mentioned in the introduction, the samples often
are multidimensional in nature (e.g., RGB colors).
The CUDA implementation takes this into account
by using templates [14], whereby the sample type
is represented by floatN. The compiler automatically
replaces floatN by float, float2, float3, depending on the
calling code. The function for converting a 1-D signal
can be implemented in CUDA as

//pole for cubic b-spline

#define Pole (sqrt(3.0f)-2.0f)

template<class floatN>

__device__ void ConvertToBSplineCoefficients(

floatN* c, uint DataLength)

{

//compute the overall gain

const float Lambda = 6.0f;

//causal initialization

c[0] = Lambda * InitCausalCoeff(c, DataLength);

//causal recursion

for (uint k = 1; k < DataLength; k++) {

c[k] = Lambda * c[k] + Pole * c[k-1];

}

//anticausal initialization

The Computer Journal, Vol. ??, No. ??, ????



4 D. Ruijters and P. Thévenaz

c[DataLength-1] =

InitAntiCausalCoeff(c, DataLength);

//anticausal recursion

for (int k = DataLength-2; 0 <= k; k--) {

c[k] = Pole * (c[k+1] - c[k]);

}

}

where the causal and anti-causal coefficients are
determined by

template<class floatN>

__device__ floatN InitCausalCoeff(

floatN* c, uint DataLength)

{

const uint Horizon = UMIN(12, DataLength);

float zk = Pole;

floatN Sum = c[0];

for (uint k = 0; k < Horizon; k++) {

Sum += zk * c[k];

zk *= Pole;

}

return(Sum);

}

template<class floatN>

__device__ floatN InitAntiCausalCoeff(

floatN* c, uint DataLength)

{

return((Pole / (Pole - 1.0f)) *

c[DataLength-1]);

}

The data is processed in place, which means that
the samples s[k] are passed as input argument and
replaced by the coefficients c[k]. For 2-D images,
at first, all rows are processed by the 1-D filter.
Subsequently, all columns are passed to the filter. For
3-D data, the same has to be done in the z-direction.
The parallel processing units of the GPU are capable
of handling multiple rows or columns simultaneously,
which accounts for the acceleration reached by the
GPU.

While the processing is trivial for the horizontal
rows, where all consecutive data elements lie next to
each other in memory, it needs some considerations for
processing the data in the remaining directions. Two
approaches were explored:

• Copying the string of data to a temporary array,
and passing this to the functions above. While
this seems a logical approach on the CPU, it is
not so straightforward on the GPU since there is
no way to dynamically allocate memory in a GPU
program. To circumvent this, an array of fixed
length was declared inline in the CUDA routine:
float line[MAXSIZE];. This, however, makes it
impossible to process data that would be larger
than MAXSIZE along any particular axis.

• Changing the routines such that they can handle
data that are not consecutive in memory. This

FIGURE 4. Upper image: a single frame from an
AVI sequence of 160 × 120 pixels. Middle left: fragment
using nearest-neighbor interpolation. Middle right: same
fragment using linear interpolation. Bottom left: cubic
reconstruction without prefilter. Bottom right: prefiltered
cubic interpolation.

is reached by passing an argument step to the
function, which tells how far two adjacent data
elements are apart. So, step is 1 for the x-
direction, width for the y-direction, and width ×
height for the z-direction. As a result, the loops in
the routines are changed from

for (uint k = 1; k < DataLength; k++) {

c[k] = Lambda * c[k] + Pole * c[k-1];

}

to

for (uint k = 1; k < DataLength; k++) {

c += step;

*c = Lambda * *c + Pole * c[-step];

}

5. RESULTS AND DISCUSSION

We show in Figure 4 the result of zooming a
frame of a video sequence using nearest-neighbor
interpolation, linear interpolation, non-prefiltered cubic
reconstruction, and prefiltered cubic interpolation.
Especially for real-time video, it is of great importance
that the data can be processed on-the-fly. Computation
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FIGURE 5. The Lena image is rotated repeatedly in 36
steps of 10 degrees each. For every iteration, the outcome of
the previous step is interpolated on a rotated grid. Top
left: nearest-neighbor interpolation. Top right: linear
interpolation. Bottom left: cubic reconstruction without
prefilter. Bottom right: prefiltered cubic interpolation.

times have to be modest in order to prevent latencies
and frame-rate drops. Nearest-neighbor and linear
interpolation clearly display the well known blocking
and star-shaped artifacts. Cubic B-spline filtering of
the unprocessed texture data does not show any distinct
image artifacts, but evidently has a smoothing effect
on the image. While this may be acceptable for some
visualization applications, it is undesirable when the
operation is part of more generic signal and image-
processing steps. The prefiltered cubic interpolation
does not suffer from the smoothing effect and delivers
high-quality interpolation.

The effect of applying interpolation on multiple
consecutive processing steps is shown in Figure 5. It
is demonstrated how an image is affected when it is
repeatedly rotated (36 steps of 10 degrees each) using
different types of filtering. The intermediate results
were stored in 32-bit floating point precision and served
as input for the next iteration. In the case of prefiltered
cubic interpolation, the filter was applied in every
iteration before interpolating on the rotated grid. In
practice, it is not necessary to reapply the prefilter when
the source data does not change. Here this is only done
to demonstrate the effect of applying interpolation in
multiple consecutive iterations.

Nearest-neighbor interpolation is clearly unsuited for
repeated interpolation steps. It is strikingly apparent
that the repeated unfiltered cubic reconstruction blurs
the image even stronger than its linear counterpart.
The prefiltered cubic interpolation, though, provides a
nice crisp image even after 36-times resampling. Also
it is worth noting that since the templated code can
easily deal with multidimensional samples (in this case,

RGB), there is no problem to process full-color data in
one go. More precisely, it is not necessary to split the
data in monochromatic red, green, and blue images for
the prefilter.

The time it takes to prefiler a 3-D voxel volume,
depending on its size, is given in Table 1 for the
different proposed prefilter implementations. The
CUDA implementation is least efficient when processing
data in the x-direction. This is caused by the fact that
spatially adjacent samples are consecutive in memory
for this direction, which leads to a lot of reading and
writing to the same memory banks. In the variant
where the data is copied to a local array, this could
be partially overcome by addressing the elements that
are copied in a nonconsecutive order. For the y- and
z-direction, the step approach is faster. This approach
also has the advantage that it is not limited by the
fixed size of a temporary array. Table 2 shows the
average processing times for prefiltering a frame in the
AVI movie (The 160 × 120 frame is also depicted in
Figure 4). Clearly, the filter is fast enough to be used
in realtime video rendering.

Performance measurements of cubic B-spline recon-
struction using a data set of 2563 voxels with the hard-
ware specified in Table 1 delivered 356 · 106 reconstruc-
tions per second by applying the techniques described
in [15]. Straightforward linear interpolation yielded
486 · 106 reconstructions per second. The small dif-
ference between those measurements can be explained
by data caching; the tri-cubic weighting performs eight
times more lookups than linear interpolation, but these
are always located very close to each other, which
means that very often the data is still in the fast local
cache memory. This implies that the cubic reconstruc-
tions during visualization of 2-D data and cross-sections
through 3-D data is negligible, and the display process
is rather limited by the refresh rate of the monitor (typ-
ically 60 or 75 Hz for LCD displays). The performance
overhead of the cubic reconstruction may be noticeable
only for volume rendering, where the entire volumetric
data set needs to be sampled.

The source code that has been used to obtain all
presented results and measurements is available for
download [10]. The accuracy of the CUDA prefilter
code is similar to a single-precision floating-point CPU
implementation. The precision issues of cubic texture
interpolation on the GPU by using the hardwired linear-
interpolation capabilities of the graphics hardware are
independent from the prefilter and are discussed in
detail in [15].

REFERENCES

[1] Lagrange, M., Marchand, S., and Rault, J.-B.
(2005) Long interpolation of audio signals using linear
prediction in sinusoidal modeling. Journal of the Audio
Engineering Society, 53, 891–905.

[2] Keys, R. G. (1981) Cubic convolution interpolation for
digital image processing. IEEE Trans. Acoust., Speech,

The Computer Journal, Vol. ??, No. ??, ????



6 D. Ruijters and P. Thévenaz
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