PHILIPS

GPU Processing within Philips Healthcare

Danny Ruijters I September 2010

Outline

- Philips Healthcare
- The GPU within Philips Healthcare
- Examples
 - Rigid 3D-3D Registration
 - Elastic Registration

Philips Healthcare

Imaging Systems

GPU Processing within

PHILIPS

Produces image data

The GPU within Philips Healthcare

GPU Usage

Visualization

- 2D (+ time), 3D (+ time), ...

- Image Processing
 - 3D Reconstruction (CT, MR)
 - Segmentation
 - Registration (matching)

GPU Processing within Philips Healthcare, Danny Ruijters

. . .

PHILIPS

API's

- OpenGL
- DirectX
- CUDA
- OpenCL
- DirectCompute

Reconstruction

$$f(\vec{x}) = \frac{1}{4\pi} \int_0^{2\pi} p^*(\alpha, (\cos \alpha, \sin \alpha) \cdot \vec{x}) \, d\alpha$$

Segmentation

Examples

Rigid 3D-3D Registration Elastic Registration

Rigid 3D-3D Registration

PHILIPS

3DRA – MR registration

Mutual information

$$I(A,B) = \sum_{a,b} p_{AB}(a,b) \log \frac{p_{AB}(a,b)}{p_A(a).p_B(b)}$$

MI is related to entropy by the equations

$$I(A, B) = H(A) + H(B) - H(A, B)$$
$$= H(A) - H(A \mid B)$$
$$= H(B) - H(B \mid A)$$

F. Maes et al., "Multimodality Image Registration by Maximization of Mutual Information," IEEE Transactions on Medical Imaging 16(2), pp. 187-198, April 1997

Joint histogram

Resampling

Joint histogram: increment(g,g)

3DRA – MR, before, after

3DRA – MR: CPU interpolation

3DRA – MR: GPU interpolation

Elastic Registration

Elastic deformation

• Parameterized deformation:

$$\mathbf{g}(\mathbf{x}) = \mathbf{x} + \sum_{\mathbf{j} \in J} \mathbf{c}_{\mathbf{j}} \varphi_{\mathbf{j}}(\mathbf{x})$$

• B-spline deformation:

$$\mathbf{g}(\mathbf{x}) = \mathbf{x} + \sum_{\mathbf{j} \in I_c \subset \mathbb{Z}^N} \mathbf{c}_{\mathbf{j}} \beta_{n_m} \left(\mathbf{x}/\mathbf{h} - \mathbf{j} \right)$$

Cubic B-spline

$$w_0(x) \cdot f_{i-1} + w_1(x) \cdot f_i + w_2(x) \cdot f_{i+1} + w_3(x) \cdot f_{i+2}$$

GPU linear interpolation

• Hardwired: linear interpolation is much faster than separate lookups

$$f_x = (1 - \alpha) \cdot f_i + \alpha \cdot f_{i+1}$$

GPU Cubic Interpolation

 Compose cubic interpolation from weighted sum of linear interpolations:

$$w_0(x) \cdot f_{i-1} + w_1(x) \cdot f_i + w_2(x) \cdot f_{i+1} + w_3(x) \cdot f_{i+2}$$

$$a \cdot f_i + b \cdot f_{i+1} = (a+b) \cdot f_{i+b/(a+b)}$$

$$f_x = (1 - \alpha) \cdot f_i + \alpha \cdot f_{i+1}$$

C. Sigg, M. Hadwiger, "Fast Third-Order Texture Filtering", GPU Gems 2

GPU Cubic Interpolation

 2D: 4 linear-interpolated lookups, instead of 16 direct lookups

 3D: 8 linear-interpolated lookups, instead of 64 direct lookups

GPU Linear Interpolation Accuracy

nVidia QuadroFX 3500

Interpolation between 0 and 2^{-16} error = calcValue – interpolValue

PHILIPS

Linear deformation, linear interpolation

27

Linear deformation, cubic interpolation

Cubic deformation, linear interpolation

Cubic deformation, cubic interpolation

Optimization

- Many parameters: huge parameter space
- Solution: use derivatives like Jacobian, Hessian
- Examples: Gradient Descent, Quasi-Newton, Levenberg-Marquardt

GPU Elastic Registration Iteration

- I. Generate deformed image on GPU & store to texture
- 2. Calculate Similarity Measure & First-Order Derivative on GPU
 - Texture with reference image
 - Texture with deformed image

First-Order Derivative of Sim. Measure

$$\frac{\partial E}{\partial c_{\mathbf{j},m}} = \frac{1}{\|I\|} \sum_{\mathbf{i} \in I_b} \frac{\partial e_{\mathbf{i}}}{\partial f_w(\mathbf{i})} \left. \frac{\partial f_t^c(\mathbf{x})}{\partial x_m} \right|_{\mathbf{x} = \mathbf{g}(\mathbf{i})} \frac{\partial g_m(\mathbf{i})}{\partial c_{\mathbf{j},m}}$$

J. Kybic, M. Unser, "Fast Parametric Elastic Image Registration"

Derivative of the Similarity Measure

SSD:
$$E = \frac{1}{\|I\|} \sum_{\mathbf{i} \in I} e_{\mathbf{i}}^{2} = \frac{1}{\|I\|} \sum_{\mathbf{i} \in I} \left(f_{w}(\mathbf{i}) - f_{r}(\mathbf{i}) \right)^{2}$$
$$= \frac{1}{\|I\|} \sum_{\mathbf{i} \in I} \left(f_{t}^{c}(\mathbf{g}(\mathbf{i})) - f_{r}(\mathbf{i}) \right)^{2}$$

$$\frac{\partial e_{\mathbf{i}}}{\partial f_w(\mathbf{i})} = 2(f_w(\mathbf{i}) - f_r(\mathbf{i}))$$

Derivative of the Deformed Image $\frac{\partial f_t^c(\mathbf{x})}{\partial x_m}$

• Sobel operator to calculate gradients:

Derivative of the Control Points

$$\mathbf{g}(\mathbf{x}) = \mathbf{x} + \sum_{\mathbf{j} \in I_c \subset \mathbb{Z}^N} \mathbf{c}_{\mathbf{j}} \beta_{n_m} \left(\mathbf{x}/\mathbf{h} - \mathbf{j} \right)$$

$$\frac{\partial g_m}{\partial c_{\mathbf{j},m}} = \beta_{n_m} \left(\mathbf{x}/\mathbf{h} - \mathbf{j} \right)$$

- Constant
- B-spline: separatable kernel of fixed size

Original Fluoroscopy Sequence

2 * 2 Control Points

8 * 8 Control Points

Deformation Field

GPU Elastic Registration

- 40 images: Quasi Newton: 16 seconds
- Gradient Descent: 63 seconds

More information

- <u>http://www.healthcare.philips.com</u>
- <u>http://dannyruijters.nl/phd.html</u>

PHILIPS

Questions?

