
GPU-Accelerated Elastic 3D Image Registration for

Intra-Surgical Applications

Daniel Ruijters1,2,3, Bart M. ter Haar Romeny2, Paul Suetens3

1Cardio/Vascular Innovation, Philips Healthcare, the Netherlands,
danny.ruijters@philips.com, tel: +31 40 2765742

2Biomedical Engineering, Biomedical Image Analysis, Technische Universiteit
Eindhoven, the Netherlands,

3Universitair Ziekenhuis Gasthuisberg, Medical Image Computing, ESAT/Radiologie,
Katholieke Universiteit Leuven, Belgium.

Abstract

Local motion within intra-patient biomedical images can be compensated

by using elastic image registration. The application of B-spline based elastic

registration during interventional treatment is seriously hampered by its con-

siderable computation time. The graphics processing unit (GPU) can be used

to accelerate the calculation of such elastic registrations by using its parallel

processing power, and by employing the hardwired tri-linear interpolation

capabilities in order to efficiently perform the cubic B-spline evaluation. In

this article it is shown that the similarity measure and its derivatives also

can be calculated on the GPU, using a two pass approach. On average a

speedup factor 50 compared to a straight-forward CPU implementation was

reached.

Key words: Intraoperative brain deformation, Image guided neurosurgery,

Non-rigid image registration, Parallel algorithms, Graphics processing unit

Preprint submitted to Computer Methods and Programs in Biomedicine April 27, 2010



1. Introduction

Brain neoplastic disease and arterio-venous malformations (AVM) are

pathologies that are frequently treated by neurosurgical resection (Figure 1).

In the mentioned applications the surgical resections are rather extensive and

cause the leakage of the cerebrospinal fluid followed by brain parenchyma col-

lapse. These phenomena cause the brain to locally deform during treatment.

Up to present date commercially available image guidance solutions apply

rigid registration during the course of the treatment. The resulting local

misalignment, which is inherent to the deformation of the brain and can

amount up to 20 millimeters [1, 2], can seriously limit the application of

image guided surgery due to the degraded precision. The ultimate solution

to overcome these misalignments is the peri-interventional usage of accurate

non-rigid registration.

The objective of a registration algorithm is to find a spatial mapping be-

tween two image datasets. Typically intensity-based registration algorithms

consist of a similarity measure, indicating the quality of a given spatial map-

ping, and an optimization strategy, which iteratively searches the optimum

of the similarity measure. The search space consists of the multi-dimensional

control variables of the spatial mapping. Non-rigid registration algorithms

employ a spatial mapping that allows to model local deformations. Such

non-rigid spatial mappings typically are driven by a large number of param-

eters.

In section 2 an overview of the related work is presented. Section 3

introduces the basic mathematics behind the applied elastic registration al-

gorithm. Section 4 describes in detail the steps that are taken to efficiently

2



Figure 1: The surgical resection of an arteriovenous malformation can cause the brain

tissue to shift, as is illustrated in this figure. The deformation of the brain can be es-

tablished by elastically registering a pre- and intra-operative volumetric reconstructions.

Pre-operatively planned data can then be mapped on the intra-procedural situation.

3



implement this method on the GPU. Section 5 investigates the performance

that can be reached, and compares the GPU implementation to a straight-

forward and an optimized CPU implementation. Finally, section 6 discusses

the usefulness of the accomplished results in neurosurgical applications.

2. Related work

Hartkens et al . have shown that it is insufficient to extrapolate the non-

rigid deformation by measuring the local displacements of surface of the brain

[1]. The displacements have to be tracked for the entire volume of the brain.

The group of Warfield et al . has proposed a non-rigid registration method

for intra-interventional MR and demonstrated the clinical feasibility [2, 3].

The usage of non-rigid registration during a clinical intervention is se-

riously hampered by the long calculation times of this type of registration

algorithms. The long duration of the calculations can be contributed to the

large parameter space of the spatial mapping, given by its many degrees of

freedom. The group of Warfield et al . reported that their method, which

registered the pre- and intra-interventional data within about 30 seconds on

a cluster of 15 workstations, delivered processing times that were considered

feasible for image-guided surgical applications [3, 4]. In this article we intend

to investigate the viability of obtaining calculation times on a cost-efficient

solution by employing the graphics processing unit (GPU) of a single work-

station.

The vast majority of unconstrained per-voxel spatial mappings are phys-

ically impossible or improbable. Penalizing such impossible mappings leads

to more robust registration algorithms (i.e. it is more likely that the found

4



mapping corresponds closely to the real deformation) and allows for more

efficient algorithms, since fewer solutions need to be probed. There are two

basic methods to accomplish this without explicitly identifying the biomed-

ical tissues in the image data; regularization of the per-voxel vector field,

or using a deformation field that possesses fewer degrees of freedom than

the per-voxel mappings [5]. In this article, we use a cubic B-spline based

deformation field, which is sufficiently smooth to model organic elastic dis-

placements of anatomical structures [6]. Furthermore, the local support of

the cubic B-spline, together with the reduced number of parameters com-

pared to per-voxel mappings, allows for more efficient calculation times.

The computation time of elastic registration can be reduced in two ways;

1) reducing the number of iterations needed to perform a registration, and 2)

by reducing the time that is needed per iteration. Kybic and Unser [7] have

demonstrated how the number of iterations efficiently can be reduced by us-

ing the first order derivatives of the similarity measure, in order to produce

a better prediction of the optimum in the optimization strategy. We intend

to complement this approach by accelerating the calculations within an it-

eration, using the vast computation power of modern off-the-shelf Graphical

Processing Units (GPU).

Though the overall computation power of the GPU nowadays surpasses

the power of the CPU [8, 9], its performance does not scale equally well for

any type of algorithm. In this article we will demonstrate how the elastic im-

age registration efficiently can be mapped on the GPU, using its hardwired

interpolation capabilities and parallel processing power. In the literature

there are several publications dealing with GPU-based elastic registration,

5



using a piece-wise linear deformation field [10, 11, 12, 13]. The real human

anatomy typically does not deform piecewise linear, and therefore this model

can only present an approximation of the real deformation. Higher order

models, like cubic B-spline driven deformation fields, offer a smoother de-

formation field, and therefore posses fewer errors that can be contributed

to the interpolation [14]. Some recent publications implement optical flow

or demons based non-rigid registration on the GPU [15, 16], unifying the

optimization and similarity measure in a combined step. These approaches

employ the earlier mentioned regularization of the per-voxel vector field.

Also the GPU implementation of B-spline driven deformation in registra-

tion using normalized mutual information and normalized cross correlation

as similarity measures has been explored [17, 18]. These papers do not use

the fast B-spline interpolation method introduced by Sigg and Hadwiger [19],

though [17] mentions it as possible future work.

In [20] we introduced a GPU-based elastic registration method for 2D

images (using fast B-spline interpolation), whereby the similarity measure

was obtained in two GPU passes and a third pass on the CPU. In this article

we have adapted this approach to 3D image registration, and managed to fit

both previous GPU passes in a single pass. Also the part that used to run

on the CPU has been brought to the GPU. This is particularly important for

volumetric image registration, since this step has become the most time con-

suming part, see section 5. Furthermore, here we performed a comparison of

the GPU approach with a straight-forward and an optimized multi-threaded

CPU implementation.

6



3. Computational methods and theory

3.1. Similarity measure

In this article we will restrain ourselves to the class of algorithms, in

which the similarity measure can be expressed as a sum of contributions per

spatial element (pixel for 2D, voxel for 3D, etc.). Sum of Squared Differences

(SSD) and Cross-Correlation (CC) are examples of members of this class.

This class generally can be written as follows:

E =
1

‖I‖
∑

~i∈I

e(A(~i), Bτ (~i)) =
1

‖I‖
∑

~i∈I

e
(
A(~i), B(~τ(~i))

)
(1)

Whereby E represents the similarity measure, e the contribution to the simi-

larity measure per spatial element, A the reference image, and B the floating

image. ~τ(~i) denotes the deformation of the reference image coordinate sys-

tem to the floating image coordinate system and Bτ is the deformed floating

image. ~i ∈ I ⊂ ZN represents the set of N -dimensional discrete spatial

positions (i.e. pixel or voxel positions in the image).

3.2. Deformation field

The deformation is driven by a set of parameters ~cj. It is this set of pa-

rameters that is manipulated by the iterative optimization algorithm. The

uniform B-spline driven deformation field then can be described by the fol-

lowing equation [7]:

~τ(~i) =~i +
∑
j∈J

~cj · β3(~i/~h− j) (2)

The control points are denoted by ~cj ∈ ZN , and J is the set of parameter

indices. Vector ~h represents the spacing of the control points, which we

7



Similarity measure Contribution per pixel Derivative

Sum of Squared Differences (SSD) e(~i) = (A(~i)−Bτ (~i))2 δe/δBτ = 2 · (A(~i)−Bτ (~i))

Cross-Correlation (CC) e(~i) = A(~i) ·Bτ (~i) δe/δBτ = A(~i)

Table 1: Similarity measures, and their derivative with respect to the deformed image.

require to be integer. Since ~i is added to the sum, the identity deformation

corresponds to all control points being zero. β3(~i) is the N -dimensional tensor

product of a uniform cubic B-spline function.

3.3. Derivatives

In order to obtain a better prediction of the parameters used in the next

iteration, the Jacobian matrix, containing the partial derivatives of the sim-

ilarity measure to the parameter space δE/δcj,m is required [21], with m

denoting the axis. The partial derivative can be decomposed into the follow-

ing product:

δE

δcj,m

=
1

‖I‖
∑

~i∈I

δe(~i)

δBτ (~i)

δB(~x)

δxm

∣∣∣∣
~x=~τ(~i)

δτm(~i)

δcj,m

(3)

The derivative of the first multiplicand in equation 3 depends on the used

similarity measure. In Table 1 the derivatives for SSD and CC are given. In

contrary to [7], we do not obtain the derivative δB(~x)/δxm of the deformed

floating image analytically. We rather use an image based approach, em-

ploying a convolution with Sobel-like kernels. As can be understood from

equation 2, the derivative of the deformation field δτm(~i)/δcj,m simply is a

constant term: βn(~i/~h− j).

8



4. Program description

4.1. General purpose computing on the GPU

The CUDA language [22] is an extension of the C language that makes the

massive parallel processing power of the GPU accessible for general purpose

programs. The parallel power is harvested by letting the same code, called a

‘kernel’, run in parallel on different pieces of data. The kernels are grouped in

blocks, and the blocks are organized in a grid. All kernels in a grid execute the

same code, but inter-kernel communication is only possible within a block.

A modern GPU has more than hundred parallel processing cores, e.g., the

nVidia QuadroFX 5600 possesses 128 processing cores, organized in 16 multi-

processor groups, and has 1.5 GB fast onboard memory. To optimally exploit

the processing power of the GPU, there should be many (hundreds) kernels

in a grid to keep the processing cores on the GPU filled. The memory on the

GPU is organized as smaller amounts of fast register and shared memory,

local to each multi-processor, and larger amounts of somewhat slower global

memory. Read-only memory can also be declared as fast constant memory

or texture memory. The texture memory further has the advantage that it

supports very efficient linear interpolation lookups.

4.2. Approach

The derivative of the floating image δB(~x)/δxm has to be calculated at

~τ(~i) for all~i ∈ I. In order to obtain this derivative, the gradient image of the

floating image is pre-calculated. It should be noted that this gradient image

is static during the optimization process, and therefore needs to be calculated

only once for the entire registration procedure. The gradient image can be

9



easily obtained on the GPU by convolving the floating image with Sobel-like

derivative kernels of size 3N .

4.3. Similarity measure & derivatives

The GPU implementation of the similarity measure and the first order

derivatives is illustrated in Figure 2, and works as follows: for every voxel in

the reference image a thread is started, and its contribution to the similarity

measure and derivatives is calculated. In the thread the corresponding loca-

tion in the deformed floating data is obtained by adding the cubic B-spline

driven deformation offset to the thread’s voxel coordinate, see equation 2.

Hereby, we can make efficient use from the fact that a cubic B-spline lookup

can be decomposed into 8 linearly weighted interpolations, rather than 64

nearest neighbor lookups, which is much faster on the GPU [19, 23].

When the deformed coordinate has been established, the voxel intensities

of the reference and floating datasets are fetched, and the similarity measure

contribution of the thread can be established, see equation 1. The gradient

of the floating dataset and its intensities are stored in a single texture with

four entries per voxel. In this way the interpolated lookup at the deformed

coordinate simultaneously yields the intensity and the gradient of the floating

data δB(~x)/δxm at this particular location.

The derivative of the similarity measure to the control points consists of

three multiplicands, see equation 3. Two of those can be established for each

GPU thread; the gradient of the floating data δB(~x)/δxm, and the derivative

of the similarity measure to the voxel space δe/δBτ . The similarity measure

and first order derivatives contributions are stored in an intermediate 3D

data array for each thread. The following pseudo CUDA code encapsulates

10



1

GPUstep 1 GPUstep 2 ΣOptimizerAB E
Figure 2: Block diagram showing the overall dataflow in the algorithm. The first GPU pass

takes the reference image A, the floating image B, and the set of deformation coefficients

~cj as input. It calculates the contribution to the similarity measure per voxel and the

first part of the derivative per voxel. This data is passed to the second GPU pass. This

establishes the derivative of the similarity measure to the B-spline coefficients, and passes

those to the optimizer. The optimizer determines the new set of B-spline coefficients, and

the cycle repeats until the optimum of the similarity measure is found.

the first pass for SSD:

__global__ void sim_kernel(float4* output, int3 h)

{

int3 coord = thread.coord;

float3 coordf = make_float3(coord) + 0.5f;

float3 offset = interpolate_bspline(deform_coeffs, coordf / h);

float3 deform = coordf + offset;

float4 floating = tex3D(flt_img, deform); //gradient.xyz, image.w

float reference = tex3D(ref_img, coordf);

float diff = reference - floating.w;

//gradient, pre-multiplied by derivative of sim. meas.

output[coord].xyz = 2 * diff * floating.xyz;

11



output[coord].w = diff * diff; //sim. meas.

}

In the second pass, the first order derivatives δE/δcj,m are calculated by

multiplying a subset of the previously stored derivative data with the B-

spline weights β3(~i/~h − j). The B-spline weights are constant, and can be

decomposed into a tensor product of three pre-computed 1D arrays of width

4 · hm. The second pass is illustrated by the following pseudo CUDA code:

__global__ void coeffs_kernel(float4* output, int3 h)

{

int3 coord = thread.coord;

int3 corner = (coord-2) * h + h/2; //left-top-front corner

int3 extent = 4 * h; //support of the cubic b-spline

float4 temp = make_float4(0,0,0,0);

for (int z = 0; z < extent.z; z++)

for (int y = 0; y < extent.y; y++)

for (int x = 0; x < extent.x; x++)

{

float tensor = tex1D(tx, x) * tex1D(ty, y) * tex1D(tz, z);

float4 inter = tex3D(intermediate_img, corner+(x,y,z));

temp.xyz += tensor * inter.xyz;

temp.w += inter.w;

}

output[coord] = temp;

}

12



(a) (b)

(c) (d)

(e)

Figure 3: (a) A slice of a cone-beam CT reconstruction of the abdomen taken at the

beginning of interventional treatment. (b) The corresponding slice of a reconstruction

during the course of the treatment. (c) Subtraction of (a) and (b), whereby dark and

light areas indicate the differences between the images. (d) The subtraction image after

the elastic registration has been performed. (e) The deformation field illustrated by a

checkerboard motif.

13



5. Results

Figure 3 illustrated the effect of the described registration algorithm, us-

ing real clinical data. The data concerned two cone-beam CT reconstruction

of the same volume of interest of 2563 voxels. The registration was performed

by the GPU implementation in 14.2 seconds by downsampling the datasets

to 1283 voxels using 5 iterations with 83 control points and 30 iterations with

163 control points. As can be seen from the difference images, the deforma-

tion of the organs (the liver in this case) is largely corrected by the elastic

deformation field.

In order to characterize the calculation time of the proposed algorithm,

the GPU implementation was compared to a straight-forward single threaded

CPU implementation and a multi-threaded SSE optimized CPU version. The

cubic interpolation code that forms the basis for the GPU, CPU and SSE

implementations can be downloaded from [24]. For all versions we used

the approach that is introduced in the previous section, with loop-unrolling

applied to the inner for-loop of the second pass. The SSE optimization

was also applied to the linear interpolation and the tensor product in the

second pass. We used a 2.33 GHz quad-core Intel Xeon with 2 GB memory

and an NVIDIA GeForce GTX 260 with 896 MB memory to perform our

measurements.

As test data we used eight different cone-beam CT datasets of the head of

patient with either arterio-venous malformations or aneurysms. The datasets

consisted of 2563 isotropic voxels, with voxel sizes ranging from 0.28 mm to

0.40 mm in each direction. The reference and floating data was obtained by

deforming each CT dataset according to a B-spline field of 163 uniformly dis-

14



tributed control points, whereby their magnitude was randomly determined

in the range [-8, 8] and some white noise was added to the voxel values.

The randomly deformed dataset then served as reference, and the original as

floating data.

We measured the time to obtain the similarity measure and first order

derivatives by performing a quasi-Newton driven optimization in 40 itera-

tions, and averaging the time per iteration. In order to bring the figures in

the same range for different dataset sizes (ranging from 323 voxels to 2563

voxels) we divided the time per iteration by the number of voxels in the

reference and floating dataset, see Figure 4. The exact numbers represent-

ing the time per voxel are given in table 2 and 3 for the SSE and GPU

implementations respectively. It can be concluded that, independent from

the implementation, the time per voxel depends somewhat on the amount of

control points, and not very much on the dataset size.

It can be observed that the GPU implementation spends less time per

voxel when there are more control points (Figure 2 bottom), which may seem

a bit counterintuitive at first glance. The effect can be explained by the fact

that there are only few threads running in the second pass when there are

few control points, which leads to some parallel processor cores being idle.

When the amount of control points increases, the amount of voxels affected

by a given control point becomes smaller. Therefore, the processing time per

iteration does not necessarily increase. More control points leads to a larger

parameter space, which means that typically the optimizer will need more

steps to find the optimum, and thus the overall computation time does in

fact increase.

15



3800

4000

4200

4400

4600

4800

5000

5200

5400

2³ 4³ 8³ 16³ 32³ 64³ 128³

ns

32³

64³

128³

256³

0

200

400

600

800

1000

1200

1400

1600

2³ 4³ 8³ 16³ 32³ 64³ 128³

ns
32³

64³

128³

256³

0

50

100

150

200

250

300

350

400

2³ 4³ 8³ 16³ 32³ 64³ 128³

ns
32³

64³

128³

256³

Figure 4: The graphs show the amount of time (in nanoseconds) that is spend per voxel,

when calculating the similarity measure and first order derivatives for a given transforma-

tion. The y-axis indicates the time in nanoseconds, and the x-axis the amount of B-spline

transformation control points. The lines in the graphs correspond to different dataset

sizes. The top graph shows the measurements for the straight-forward CPU version, the

middle graph represents the multi-threaded SSE implementation, and the bottom graph

the GPU version. Note that the range of the y-axis differs for the various graphs.

16



23 43 83 163 323 643 1283

323 793 549 582 607 646

643 1351 404 436 458 475 496

1283 1315 391 489 454 442 454 502

2563 1308 378 446 502 528 444 345

Table 2: The amount of time (in nanoseconds) that is spend per voxel, when calculating

the similarity measure and first order derivatives using the SSE implementation.

23 43 83 163 323 643 1283

323 354 369 119 97 137

643 302 314 67 59 48 81

1283 243 325 66 67 64 41 71

2563 325 338 133 226 93 60 40

Table 3: The amount of time (in nanoseconds) that is spend per voxel, when calculating

the similarity measure and first order derivatives using the GPU implementation.

17



0

500

1000

1500

2000

2500

3000

3500

4000

1 2 3 4 5 6 7 8

ms

Figure 5: The calculation time per iteration (y-axis, in milliseconds) for the SSE imple-

mentation, using different amount of threads (x-axis).

On our quad-core machine the multi-threaded SSE algorithm performed

best when using four threads (Figure 5), since then the processing resources

of the CPU were optimally used with the least amount of thread scheduling

overhead. Therefore we used four threads for all our other measurements on

the SSE algorithm.s The speedup factor of the GPU version compared to the

other two implementations is illustrated in Figures 6 and 7. The boxplots

were obtained by comparing the time per iteration for similar datasets sizes

and amount of control points. They show the median, and the distribution

of the speedup factors. Figures 4, 6 and 7 show that the multi-threaded SSE

implementation provides a speedup of approximately a factor 10 over the

straight-forward CPU version, whereas the GPU implementation delivers an

average speed improvement of of approximately a factor 50.

When we dissected the time per iteration into the time used for the first

and second pass (Table 4), we discovered that the GPU version spends con-

siderably more time in the second pass than in the first pass.

18



1

10

100

1000

10000

100000

32³ 64³ 128³ 256³

m
s

CPU

SSE

GPU

Figure 6: The calculation time per iteration (y-axis, in milliseconds, logarithmic scale) for

different dataset sizes (x-axis, in amount of voxels), using 163 B-spline control points, for

the three implementations.

0

2

4

6

8

10

12

14

CPU/SSE

0

2

4

6

8

10

12

SSE/GPU
0

20

40

60

80

100

120

140

CPU/GPU

Figure 7: The boxplots show the speedup factor distribution (y-axis) when comparing the

various implementations.

Implementation Pass 1 Pass 2 Overhead

SSE 536.8 ms 474.2 ms 3.1 ms

GPU 9.6 ms 128.8 ms 1.5 ms

Table 4: Distribution of the time per iteration over the passes, using datasets of 1283

voxels and 163 control points.

19



6. Discussion

The application of elastic registration during interventional treatment de-

mands that the registration can be obtained within a limited time frame. The

number of iterations that has to be evaluated in the iterative optimization of

a similarity measure can be reduced by more accurately predicting the next

step towards the optimum, based on the derivative of the similarity measure

with respect to the parameter space. In this article we have demonstrated

how the similarity measure and its derivative can be calculated on the GPU,

using a two pass algorithm. In the first pass the floating image is deformed,

using an elastic uniform cubic B-spline deformation field, and the similarity

measure and first order derivatives contribution are stored per voxel. The

second pass yields the derivative of the similarity measure per control point.

The calculation of the derivative was further accelerated by using a static

gradient image of the floating image, that was obtained by a convolution

with Sobel-like kernels.

In this article we focussed on the calculation time of the CPU and GPU

implementations of the same basic algorithm. In practise, a good approach

has proven to start the registration in low resolution with few control points

to find large deformations, and to gradually refine the registration by moving

to higher resolutions and more control points [15]. Lets consider e.g . a regis-

tration that first performs 20 iterations at a resolution of 643 with 83 control

points, then 10 iterations at 1283 with 163 control points, and finally 5 it-

erations at 2563 with 323 control points. The straight-forward CPU version

would take 329 seconds (5.5 minutes) to perform this registration, the multi-

threaded SSE version costs 31.2 seconds, and the GPU implementation takes

20



7.4 seconds. Five minutes is unacceptable for many interventional and sur-

gical applications, 31.2 seconds becomes an issue when the registration has

to be performed multiple times (to compensate for progressively deforming

of the brain), while 7.4 seconds is quite acceptable.

References

[1] T. Hartkens, D. L. G. Hill, A. D. Castellano-Smith, D. J. Hawkes, C. R.

Maurer Jr., A. J. Martin, W. A. Hall, H. Liu, C. L. Truwit, Measurement

and analysis of brain deformation during neurosurgery, IEEE Trans.

Medical Imaging 22 (1) (2003) 82–92.

[2] N. Archip, O. Clatz, S. Whalen, D. Kacher, A. Fedorov, A. Kot,

N. Chrisochoides, F. Jolesz, A. Golby, P. M. Black, S. K. Warfield,

Non-rigid alignment of pre-operative MRI, fMRI, and DT-MRI with

intra-operative MRI for enhanced visualization and navigation in image-

guided neurosurgery, NeuroImage 35 (2007) 609–624.

[3] O. Clatz, H. Delingette, I.-F. Talos, A. J. Golby, R. Kikinis, F. A. Jolesz,

N. Ayache, S. K. Warfield, Robust non-rigid registration to capture brain

shift from intra-operative MRI, IEEE Trans. Medical Imaging 24 (2005)

1417–1427.

[4] N. Chrisochoides, A. Fedorov, A. Kot, N. Archip, P. Black, O. Clatz,

A. Golby, R. Kikinis, S. K. Warfield, Toward real-time image guided neu-

rosurgery using distributed and grid computing, in: Proc. ACM/IEEE

Conf. Supercomputing, 2006, pp. 37–50.

21



[5] D. Loeckx, Automated nonrigid intra-patient image registration using

B-splines, Ph.D. thesis, Katholieke Universiteit Leuven (2006).

[6] D. Rueckert, L. I. Sonoda, C. Hayes, D. L. G. Hill, M. O. Leach, D. J.

Hawkes, Nonrigid registration using free-form deformations: Application

to breast mr images, IEEE Trans. Medical Imaging 18 (8) (1999) 712–

721.

[7] J. Kybic, M. Unser, Fast parametric elastic image registration, IEEE

Trans. Image Processing 12 (11) (2003) 1427–1442.

[8] J. Krüger, R. Westermann, Linear algebra operators for GPU implemen-

tation of numerical algorithms, in: International Conference on Com-

puter Graphics and Interactive Techniques, SIGGRAPH’05, 2005, p.

234.

[9] J. D. Owens, D. Luebke, N. Govindaraju, M. Harris, J. Krüger, A. E.

Lefohn, T. J. Purcell, A survey of general-purpose computation on

graphics hardware, Computer Grphics Forum 26 (1) (2007) 80–113.

[10] G. Soza, M. Bauer, P. Hastreiter, C. Nimsky, G. Greiner, Non-rigid

registration with use of hardware-based 3D Bézier functions, in: MIC-

CAI’02, 2002, pp. 549–556.

[11] R. Strzodka, M. Droske, M. Rumpf, Image registration by a regularized

gradient flow. a streaming implementation in DX9 graphics hardware,

J. Computing 73 (4) (2004) 373–389.

[12] A. Köhn, J. Drexl, F. Ritter, M. König, H.-O. Peitgen, GPU accelerated

22



registration in two and three dimensions, in: Proc. Bildverarbeitung für

die Medizin, 2006, pp. 261–265.

[13] C. Vetter, C. Guetter, C. Xu, R. Westermann, Non-rigid multi-modal

registration on the GPU, in: SPIE Medical Imaging’07, Vol. 6512, 2007.

[14] E. H. W. Meijering, Spline interpolation in medical imaging: Compari-

son with other convolution-based approaches, in: Proc. 10th European

signal processing conference (EUPSICO), 2000, pp. 1989–1996.

[15] T. Rehman, G. Pryor, J. Melonakos, A. Tannenbaum, Multi-resolution

3D nonrigid registration via optimal mass transport on the GPU, in:

Proc. Computational Biomechanics for Medicine-II, MICCAI, 2007, pp.

122–132.

[16] P. Muyan-Özçelik, J. D. Owens, J. Xia, S. S. Samant, Fast deformable

registration on the GPU: A CUDA implementation of demons, in: Proc.

Computational Science and Its Applications (ICCSA), 2008, pp. 223–

233.

[17] M. Teßmann, C. Eisenacher, F. Enders, M. Stamminger, P. Hastre-

iter, GPU accelerated normalized mutual information and B-spline

transformation, in: Eurographics Workshop on Visual Computing for

Biomedicine, 2008, pp. 117–124.

[18] R. E. Ansorge, S. J. Sawiak, G. B. Williams, Exceptionally fast non-

linear 3D image registration using GPUs, in: IEEE NSS/MIC Workshop

on High Performance Medical Imaging (HPMI), 2009.

23



[19] C. Sigg, M. Hadwiger, Fast third-order texture filtering, in: M. Pharr

(Ed.), GPU Gems 2: Programming Techniques for High-Performance

Graphics and General-Purpose Computation, 2005, pp. 313–329.

[20] D. Ruijters, B. M. ter Haar Romeny, P. Suetens, Efficient GPU-

accelerated elastic image registration, in: Conf. Biomedical Engineering

(BioMed), 2008, pp. 419–424.

[21] S. Kabus, T. Netsch, B. Fischer, J. Modersitzki, B-spline registration

of 3D images with levenberg-marquardt optimization, in: SPIE Medical

Imaging’04, 2004, pp. 304–313.

[22] I. Buck, GPU computing: Programming a massively parallel processor,

in: Code Generation and Optimization, CGO’07, 2007, p. 17.

[23] D. Ruijters, B. M. ter Haar Romeny, P. Suetens, Efficient GPU-based

texture interpolation using uniform B-splines, Journal of Graphics Tools

13 (4) (2008) 61–69.

[24] D. Ruijters, CUDA cubic B-spline interpolation (CI).

URL http://dannyruijters.nl/cubicinterpolation/

24



Summary

Brain neoplastic disease and arterio-venous malformations are patholo-

gies that are frequently treated by neurosurgical resection. In the mentioned

applications the surgical resections are rather extensive and cause the leakage

of the cerebrospinal fluid followed by brain parenchyma collapse. These phe-

nomena cause the brain to locally deform during treatment. The ultimate

solution to overcome these misalignments is the peri-interventional usage of

accurate non-rigid registration.

In this article, we use a cubic B-spline based deformation field, which

is sufficiently smooth to model organic elastic displacements of anatomical

structures. Furthermore, the local support of the cubic B-spline, together

with the reduced number of parameters compared to per-voxel mappings, al-

lows for more efficient calculation times. The similarity measure is restricted

to measures that can be expressed as a sum of contributions per spatial

element.

The proposed approach is fully contained on the GPU, and consists of

two passes. In the first pass a thread is started on the GPU for every voxel

in the reference image, and its contribution to the similarity measure and

derivatives is calculated and stored in an intermediate volumetric array. In

the second pass, a thread is run for every B-spline coefficient. For each thread

the similarity measure contribution, as well as the first order derivatives of

the B-spline deformation parameters, are calculated.

In order to characterize the calculation time of the proposed algorithm,

the GPU implementation was compared to a straight-forward single threaded

CPU implementation and a multi-threaded SSE optimized CPU version. As

25



test data we used eight different cone-beam CT datasets of the head of pa-

tient with either arterio-venous malformations or aneurysms. We measured

the time to obtain the similarity measure and first order derivatives by per-

forming a quasi-Newton driven optimization in 40 iterations, and averaging

the time per iteration. In order to bring the figures in the same range for

different dataset sizes we divided the time per iteration by the number of

voxels in the datasets.

It can be concluded that the time per voxel depends somewhat on the

amount of control points, and not very much on the dataset size. On average

a speedup factor 50 compared to the straight-forward CPU implementation

and a factor 5 with respect to the multi-threaded SSE version was reached.

When these performance figures are projected on a realistic calculation sce-

nario, we can conclude that the straight-forward CPU implementation is too

slow for habitual application during surgery. The multi-threaded SSE ap-

proach is suitable for singular use during the intervention, while the GPU

version is considered fast enough for multiple usage to correct for progressive

deforming of the treated anatomy.

Conflict of interest

The authors declare that they have no conflict of interest.

No external funding was involved in the execution of the described research.

26


