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Purpose or Learning Objective: 

In this article we will investigate the different categories of machine learning driven 

solutions that can provide added value in cathlab procedures. Categorizing machine 

learning applications in the cathlab, and structurally investigating their respective data 

needs, aids in developing a systematic approach to the data collection and algorithm 

development challenges. Machine learning applications in the cathlab can be divided in 

four data categories, dependent on the type of data they receive as input: 1) image-

based, 2) 1D signals such as ECG, respiratory, etc., 3) natural language processing, 4) 

hybrid or other data sources. Machine learning algorithms, regardless of their input data 

type, typically address a fine-grained task, such as object detection, signal quality 

improvement, image registration, event detection, etc. These fine-grained algorithmic 

blocks then feed into high level applications, such as device navigation, lesion 

quantification, patient risk stratification, functional parametrization, etc. 

The strengths and plasticity of machine learning techniques make them an attractive 

solution for many tasks that cannot easily be automated otherwise. Particularly, 

convolutional networks have demonstrated robust performance and versatility in 

segmentation tasks, and can be easily retrained to handle newly introduced devices. In 

this article we will investigate the different categories of machine learning driven 

solutions that can provide added value in cathlab procedures. 

Methods or Background: 

In recent years machine learning techniques have seen a tremendous increase in 

adoption, initially fueled by the massive use of social media leading to very large 

databases. A development which has also translated to the medical arena. For clinical 

applications, however, the sizeable data collections machine learning demands remains 

a challenge. Categorizing machine learning applications in the cathlab, and structurally 

investigating their respective data needs, aids in developing a systematic approach to 

the data collection and algorithm development challenges. 
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Categories 

Machine learning applications in the cathlab can be divided in four data categories, 

dependent on the type of data they receive as input: 

1. Image-based: This comprises interventional X-ray, ultrasound, transesophageal 

echocardiography, intravascular imaging, such as IVUS and OCT, etc. 

2. 1D signals: e.g., ECG, respiratory, blood pressure, intravascular measurements 

such fractional flow reserve FFR, etc. 

3. Natural language processing: sources can be either audio fed speech to text 

(including voice commands and voice annotation), diagnostic patient reports, etc. 

4. Hybrid or other data sources: e.g., combination of the input data types above 

(such as e.g., x-ray images, ECG and respiratory signals). 

 

Machine learning algorithms, regardless of their input data type, typically address a fine-

grained task, such as: 

• intra-vascular device detection: such as catheter segmentation [1] (Figure 1), 

needle [2], valve (Figure 2), or stent (Figure 3) detection. 

• signal quality improvement: e.g., noise reduction [3]. 

• image registration: which can be subdivided into rigid and elastic registration [4], 

and into 2D3Dand 3D-3D registration. 

• event detection: such as adverse event detection [5], or valve deployment (Figure 

2). 

• procedure phase recognition: which segments the procedure into different time 

segments [6]. 

• unstructured data to structured data translation: such as the mining of 

unstructured text sources [5], 

• etc. 

These fine-grained algorithmic blocks then feed into high level applications, such as: 

• device navigation [1,2], 

• lesion quantification [7],  

• patient risk stratification [8],  

• integrating pre-interventional planning data, 

• functional parametrization (e.g. blood flow 

quantification [9]), 

• etc. 

Results or Findings: 

In this section several high level applications, and their machine learning building blocks 

will be further examined. 

Device navigation 

Typically, in minimally invasive procedures the in-body device can only be navigated and 

monitored through external imaging. Suitable imaging modalities are ultrasound, 

interventional x-ray, and realtime CT and MR. AI can be employed to detect and locate 

interventional devices, such as intravascular devices, and other percutaneous devices. 

Intra-vascular devices comprise catheters and guidewires [1] (Figure 1), intra-vascular 

valves (Figure 2), stents (Figure 3), etc. Other percutaneous devices entail needles [2], 

scalpels, etc. AI algorithms are particularly suited for detecting and segmenting devices 



since they are trained by a suitable set of examples [1,10,11]. This implies that the 

training set can contain a variety of devices with different visual properties, and it can be 

easily extended with new devices. 

Integrating pre-interventional planning data 

Integrating data from various imaging modalities can aid the interventional treatment 

procedure. E.g., pre-interventional planning conducted on diagnostic images can be 

utilized during the procedure [12], see Figure 4. The spatial registration of the pre-

interventional and peri-interventional images can then bring the pre-interventional 

planning into the coordinate space of the interventional equipment. This allows to 

overlay the planning, such as a needle path, on the live images containing the 

interventional devices. Also, multiple complementary imaging modalities, such as e.g. 

ultrasound and x-ray, can be combined to create richer more informative data [13]. The 

combination of the images can show interfaces between tissues and objects that can 

only be visualized by a different imaging modality. 

The spatial co-registration process can be conducted based on explicit markers and 

other external knowledge, on image content alone, or a combination of those. The 

resulting spatial mapping can be rigid, affine, elastic, or other deformable, depending on 

the clinical application. E.g., for intra-cranial applications a rigid registration is often 

sufficient, while registering pre- and intra-interventional abdominal images may require 

elastic registration to account for respiratory motion, etc. [4]. 

AI based approaches may play a role in establishing the spatial co-registration mapping 

either by detecting explicit landmarks and/or identifying landmark features in images, or 

by integrally addressing the registration task [14,15]. 

 

Functional parametrization 

Functional imaging has as purpose to characterize the functioning of biological 

processes, rather than visualizing the anatomy (though it is typically combined with 

anatomical imaging in order to localize the functional aspects). Examples of the 

functions that are imaged peri-interventionally are blood flow in vessels and aneurysms 

[9,16], blood perfusion of the parenchymal tissue, valve motion, etc. Functional imaging 

is typically based on intensive processing of raw measurements. For e.g. blood flow 

vector fields through digital subtraction angiography (see Figure 5), the motion of 

contrast through the vascular structures is followed in the consecutive frames, while for 

valve motion the valve leaflets are segmented and followed over time. These 

segmentations and motion of carrier substances are very well suited for AI approaches, 

such as convolutional networks [1,10]. 

Conclusion: 

Machine learning employed in the cathlab can be categorized along multiple 

dimensions. The segmentation can be performed based on input data type, fine-grained 

algorithmic tasks, and high level applications. An overview of the data categories aids in 

structurally addressing data needs and development efforts. 
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Fig 1: Automatic device detection, such as catheter segmentation and 

catheter tip extraction performed by machine learning [1]. 
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Fig 2: Device recognition (valve, pigtail, temp lead), including 

deployment status. Machine learning can also handle overlapping 

devices. 

 

 

 

 

 

 

 

Fig 3: The presence of stitches does not prohibit the machine learning 

driven stent detection to find the stent. 

 

 



 

Fig 4: Example of spatially registered multi-modal datasets, used for 

percutaneous needle path planning and navigation. 

 

Fig 5: Example of intra-vascular 

flow imaging using digitally 

subtracted angiography imaging. 

 

 


