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ABSTRACT
In this article we discuss the accuracy issues that arise,
when implementing cubic B-spline interpolation on the
Graphics Processing Unit (GPU). Imprecision is inherent
to the discrete nature of digital computing, especially when
using floating point numbers. However, there are special
accuracy issues to deal with, when employing the GPU.
The GPU is more and more being regarded as a general pur-
pose parallel co-processor, and currently it is also finding
its way in environments, where the algorithmic outcome
has great impact, such as in biomedical image analysis. For
such applications it is eminent that the accuracy of the re-
sults is documented, and properly taken into account. Next
to analyzing the accuracy of the cubic B-spline interpola-
tion, we propose a modification to the GPU algorithm, in
order to increase its precision, without sacrificing any sig-
nificant performance.
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1 Introduction

The arithmetical power of modern GPUs has surpassed
the power of mainstream CPUs. Though the GPU perfor-
mance does not scale equally well for any kind of algo-
rithm, the architecture of the GPU has proven to be very
suited for many signal processing tasks in general, and im-
age processing in particular. Therefore, there has been an
increasing interest to employ the GPU for such applications
[1, 2]. An interest which has motivated nVidia to release
the CUDA language [3], which is especially targeted at
the implementation of non-visualization algorithms on the
GPU (though it can be integrated with visualization ori-
ented APIs, like OpenGL and DirectX).

Also in the medical image processing community
there has been a growing interest in the application of the
GPU in non-visualization tasks [4, 5, 6, 7]. With this new
application domain, the accuracy of the GPU arithmetic has
become immensely more important. It might be annoying,
when an imprecision leads to an artefact in a game. How-
ever, when medical decisions depend on it, the stakes are
incomparable. It is not so much that the medical domain

demands infinite precision. After all, inaccuracies are in-
herent to discrete arithmetics. Primarily, it is most impor-
tant that the accuracy is known and documented, so that
it can be taken into account, when implementing an algo-
rithm, and interpreting its results.

This work was originally motivated by the confronta-
tion with unexpected discontinuities (see figure 1), when
implementing a GPU version of a B-spline driven defor-
mation field, which was to be used in elastic registration [8]
of medical image data. The discontinuities motivated us to
investigate their source, and finding improvements and so-
lutions to avoid, or at least diminish them.

2 Uniform B-spline interpolation

Uniform B-spline interpolation has been described exhaus-
tively by Unser [9]. The starting point for any degree of the
B-spline function forms the B-spline basis of degree 0, also
known as the box function:
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Any subsequent B-spline basis of degree n can be ob-
tained by the recursive convolution of the box function with
the B-spline basis of degree n− 1:

βn(x) = β0(x) ∗ βn−1(x), n ≥ 1 (2)

The derivative of the B-spline basis function can eas-
ily be obtained by:
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δx

= βn−1
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Which means that the derivative of a B-spline function of
degree n, is a B-spline function of degree n − 1. Further
it can be concluded that the B-spline function of degree n
has a non-zero derivative up to the n-th order, which is a
indicator for the ‘smoothness’ of the function.

The integral of the B-spline basis function of degree
n can be expressed as:
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Figure 1. (a) A GPU-based B-spline deformed image. (b) A zoomed part of the left image. The artifacts are clearly visible: the
transition between the blocks should be smooth, whereas it is jerky.

Spline-based interpolation at a given position x ∈ R
can be written as:

s(x) =
∑

k∈Z
c(k)βn(x− k) (5)

Or in words: the interpolated value s at a given position
x, is the summation of the shifted central B-spline βn,
weighted by the B-spline coefficients c(k).

Since B-splines have limited support, the amount of
coefficients c(k) that play a role in the interpolation at po-
sition x are quite moderate. It should be pointed out that
c(k) = s(k) is only the case for the 0th and 1st order B-
spline (corresponding to nearest neighbour and linear in-
terpolation). The coefficients for the cubic B-spline can
be efficiently obtained, using a causal and anti-causal filter
(see [9]).

The 0th (nearest-neighbour), 1st (linear) and 3rd (cu-
bic) order B-spline are most popular. The 0th and 1st order
B-spline can be evaluated very rapidly, and do not need
any change of sampled values. However often they do not
produce a result that is sufficiently close to natural signals.
The cubic B-spline is sufficiently smooth, while its support
is still quite local (its width is 4), which is favourable for the
cost of the interpolation. Since the deformation of organs
and other anatomical structures is typically rather smooth,
we chose the cubic B-spline to model our deformation field.

3 GPU cubic B-spline evaluation

Sigg and Hadwiger [10] have described how cubic B-spline
interpolation can be performed efficiently by the GPU.

Their method was primarily targeted at interpolation used
in visualization, such as image interpolation and volume
rendering applications. Even though in the case of high dy-
namic rendering (hdr), the result of the interpolation has to
surpass the 8-bit accuracy that is common in visualization
tasks, the accuracy requirements are typically far less than
when B-spline functions are used in biomedical signal and
image processing and modeling algorithms.

The method of Sigg and Hadwiger is based on decom-
posing the cubic interpolation in 2N weighted linear inter-
polations, instead of 4N weighted nearest neighbour inter-
polations, whereby N denotes the dimensionality. Since
linear interpolations are hardwired on the graphics hard-
ware, they can be performed much faster than addressing
the set of nearest neighbour lookups, they are composed
of.

The basic idea can be understood by considering 1D
linear interpolation, which can be expressed as follows:

fi+α = (1− α) · fi + α · fi+1 (6)

with i ∈ N and α ∈ [0, 1]. Building on this equation,
the weighted addition of two neighbouring samples can be
rewritten to be expressed as a weighted linear interpolation:

a · fi + b · fi+1 = (a + b) · fi+(b/(a+b)) (7)

Evaluating the deformation for any given position, us-
ing a cubic B-spline, means the weighted addition of 4N

adjacent coefficients, whereby the weights are determined
by the cubic B-spline function (see equation 5 and figure 2).
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Figure 2. The cubic B-spline, and its 1st order derivative.
Note that for all, there is a single equation per quadrant.
We use the variant of the B-spline function that is centered
around the origin, since this allows us to exploit its symme-
try in the GPU programs.

In the 1D case this looks like:

f̃i+α = w0(α) · ci−1 + w1(α) · ci +
w2(α) · ci+1 + w3(α) · ci+2

(8)

Using equation 7, we can decompose equation 8 into
two weighted linear interpolated lookups.

f̃i+α = g0 · ci+h0 + g1 · ci+h1

g0 = w0 + w1

g1 = w2 + w3

h0 = (w1/g0)− 1
h1 = (w3/g1) + 1

(9)

Of course this scheme can easily be extrapolated to
the N -dimensional case, whereby g~j =

∏
gjk

, and ~h~j =∑
~ek · hjk

, with k denoting the axis and ~ek the basis vec-
tor. In the 3D case this means that 64 nearest neighbour
interpolations can be replaced by 8 linear interpolations.
On modern GPUs that means a considerable performance
gain.

Sigg and Hadwiger put g0, h0 and h1 as a function
of α in a 1D lookup texture (g1 is redundant), and use this
texture to obtain the variables g and h in the fragment pro-
gram. They suggest using an RGB texture, consisting of
128 samples of 16-bit accuracy, and using linear filtering
between the samples. This means that for 3D interpolation
3 lookups in this texture are performed, and from the re-
sult the eight coordinates for the linear interpolations are
calculated.

4 Texture filtering

A number of publications have discussed the accuracy of
the floating point arithmetic of the GPU [11, 12, 1, 13].
The floating point precision certainly has to be considered,
when employing the GPU in e.g. medical environments.
However, in our case it was not the main source of impre-
cision.

The method for efficient B-spline interpolation, de-
scribed in section 3, is based on using the hardware linear
interpolation capabilities of the GPU, in order to speed up
the evaluation of the B-spline. Exactly in this fast hard-
wired linear interpolation lies the root cause of the inaccu-
racies and discontinuities, which we observed.

In order to characterise the precision of the linear in-
terpolation capabilities, we created a texture, using a 16-bit
gray scale image, whereby half the image was filled with
zeros, and the other half with ones. It should be noted
that OpenGL normalizes this image, when it is used as a
texture, meaning that all pixel values are divided by the
maximum capacity of the pixel word (which is 65535 for
16-bit words). Now we zoomed in on the border between
the zeros and the ones in the image. This is done by map-
ping a border pixel with zero on the left edge of an off-
screen buffer of 32-bit floating point precision, and a bor-
der pixel with one to the right edge. The expected result of
this procedure, when discretization and accuracy issues are
ignored, is a set of linear increasing samples in the range
from 0 to 1/65535.

If we take a look at figure 3, we can notice that for
textures in the 16-bit floating point format, the graph looks
exactly as predicted. The graph for the 16-bit integer for-
mat, however, shows a ramp function, instead of a linear
increasing function. The reason for this behaviour, is the
fact that the result of the linear filtered texture fetch, pos-
sesses the same accuracy as the texture data format. Since
the texture values we are interpolating only differ at the
least significant bit, the linear interpolation in integer for-
mat is only able to express either 0 or 1.

The 16-bit floating point format on the GPU consists
of one sign bit, a five bit exponent and ten bit mantissa.
This means that it is impossible to encapsulate data, which
consist natively of 12- or 16-bit integer words (popular for-
mats in the medical world), without losing precision. Such
data can be casted to 24- or 32-bit floating point format,
without loss of precision, but that would mean that more
memory is needed to hold the data, which might be a se-
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Figure 3. Linear interpolation between 0 and 1/65535. The vertical axis represents the interpolated value times 65535, and the
horizontal axis the 256 sample coordinates. (a) shows the results for a 16-bit integer texture, and (b) for a 16-bit floating point
texture.
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Figure 4. Cubic B-spline interpolation. The image coeffi-
cients c are multiplied by the weights wn(α). The weights
are determined by the fractional amount α of the present
coordinate, and the B-spline basis function. Index i is the
integer part of the coordinate.

rious issue for large datasets (> 1 GB). Further it should
be taken into account that hardware linear interpolation of
24- or 32-bit floating point textures is only supported on the
very latest generation of GPUs.

Conclusively, we can state that the texture format al-
ways poses a tradeoff between 1) interpolation accuracy,
2) lossy data encoding, 3) memory efficiency, or redundant
encoding.

5 Improving the accuracy

Next to the linear interpolation, a second cause for impreci-
sion is the usage of a lookup table to determine the weights
g0, g1, h0 and h1. Of course it is possible to increase
the number of samples in the lookup table, and to change
the data format to 16- or 32-bit floating point, if the hard-
ware supports linear interpolations of these formats. We,
however, explore a more radical approach: calculating the
weights on the fly, on the GPU.

Equation 8 shows that the variables g and h are a func-
tion of the B-spline weights w. The weights w, on their
turn, depend on the fractional amount α of the present co-
ordinate, and on the interpolating basis function, which is
the cubic B-spline in our case (see figure 4). More specifi-
cally:

w0(α) = β3(−α− 1)
w1(α) = β3(−α)
w2(α) = β3(1− α)
w3(α) = β3(2− α)

(10)

Implementing equation 10 on the GPU, seems to sug-
gest that a number of conditional statements have to be
evaluated, see figure 2. Which would be undesirable, since
that would lead to a considerable slowdown of the frag-
ment program. However, the conditional statements can be
avoided, since the determination of the weights is facili-
tated by the fact that w0 is always located in the first quad-
rant of the cubic B-spline, w1 always in the second, etc.
Since the cubic B-spline (as well as its derivatives) consist
of a single equation per quadrant, the following equations
for the set of weights can be established:

w0(α) = 1
6 · (1− α)3

w1(α) = 2
3 − 1

2 α2 · (2− α)
w2(α) = 2

3 − 1
2 (1− α)2 · (1 + α)

w3(α) = 1
6 · (α)3

(11)

After the weights have been established, the variables
g and h can be calculated, using equation 9. The pseudo
Cg code [14] in appendix 1 illustrates this process for the
2D case.

In table 1 the deviation from the expected interpolated
value is given for both cubic interpolation methods. The
error is defined as the normalized pixel intensity calculated



Table 1. Accuracy and timing of the two presented cubic
interpolation flavours.

Method
∑

error2 Time (ms)
Lookup table 7.68 · 10−4 15.0

On-the-fly 5.83 · 10−4 15.6

by the fragment program, minus the normalized intensity
calculated by the CPU, using double floating point preci-
sion. The errors were squared, and summed, for 2562 pix-
els. The on-the-fly method is clearly more accurate than
the lookup table method, while the duration of the interpo-
lation per frame is only slightly longer. Our figures were
measured, using an nVidia QuadroFX 3500 with 256 MB
on board memory.

The division h = w/g in equation 9 can be accounted
for the fact that the on-the-fly method is somewhat slower.
On the same time, it is the division that is the biggest cause
for imprecisions, since on the GPU it is only an approxima-
tion, instead of an exact division. It is possible to avoid any
explicit divisions by using projective texture lookups. In
such lookups, the x-, y-, and z- coefficients of the homoge-
neous texture coordinates are divided by the w-coefficient.
All dividers can be united in one w-coefficient, by making
use of the following identity:

a

b
+

c

d
=

1
bd
· (ad + cb) (12)

However, the projective texture lookup scheme did not pro-
vide any improvements, neither in terms of timing, nor in
terms of accuracy.

6 Conclusions

The GPU is more and more being considered as a potent,
massively parallel co-processor, and therefore being more
often employed in general purpose computing. Especially
when the GPU is being used in a situation where the out-
come of the algorithm has major impact, such as is the case
in biomedical image processing, the accuracy of the GPU
output is highly important. In order to assess whether the
precision is sufficient, it is necessary that it is documented.
In this context, we intended to analyze and discuss the ac-
curacy issues that are encountered when performing cubic
B-spline interpolation on the GPU.

We have demonstrated that the hardwired linear in-
terpolation capabilities, though very time efficient, are the
main concern when accurate results are required. Further,
we have proposed a solution that circumvents the usage of
lookup tables in GPU cubic B-spline interpolation. Our
method rather performs all calculations inline. Our tests
show that this yields more accurate results, while the per-
formance (in terms of speed) hardly suffers.
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Appendix 1

The pseudo Cg code [14] below illustrates the cubic B-spline interpolation, with inline evaluation of the variables g and h:

float2 CubicInterpolate(
float2 coordSource : TEXCOORD0,
uniform sampler2D tex_cp, // 2D texture with coefficients
uniform float2 nrCP, // size of texture tex_cp:
uniform float2 rec_nrCP // 1 / nrCP:

) : COLOR
{

// transform the coordinate from [0,1] to [-0.5, nrCP-0.5]
float2 coord_hg = coordSource * nrCP - 0.5;
float2 index = int2(coord_hg);
float2 fraction = coord_hg - index;
float2 one_frac = 1.0 - fraction;
float2 w0 = 1.0/6.0 * one_frac*one_frac*one_frac;
float2 w1 = 2.0/3.0 - 0.5 * fraction*fraction*(2.0-fraction);
float2 w2 = 2.0/3.0 - 0.5 * one_frac*one_frac*(2.0-one_frac);
float2 w3 = 1.0/6.0 * fraction*fraction*fraction;

float2 g0 = w0 + w1;
float2 g1 = w2 + w3;
float2 h0 = (w1 / g0) - 1;
float2 h1 = (w3 / g1) + 1;

// determine the coordinates for linear interpolation
float2 coord00 = index + h0;
float2 coord10 = index + float2(h1.x, h0.y);
float2 coord01 = index + float2(h0.x, h1.y);
float2 coord11 = index + h1;

// transform the coordinate from [-0.5, nrCP-0.5] to [0,1]
coord00 = (coord00 + 0.5) * rec_nrCP;
coord10 = (coord10 + 0.5) * rec_nrCP;
coord01 = (coord01 + 0.5) * rec_nrCP;
coord11 = (coord11 + 0.5) * rec_nrCP;

// fetch the four linear interpolations
float2 tex_cp00 = tex2D(tex_cp, coord00).xy;
float2 tex_cp10 = tex2D(tex_cp, coord10).xy;
float2 tex_cp01 = tex2D(tex_cp, coord01).xy;
float2 tex_cp11 = tex2D(tex_cp, coord11).xy;

// weigh along the y-direction
tex_cp00 = lerp(tex_cp01, tex_cp00, g0.y);
tex_cp10 = lerp(tex_cp11, tex_cp10, g0.y);

// weigh along the x-direction
tex_cp00 = lerp(tex_cp10, tex_cp00, g0.x);
return tex_cp00;

}


